脊柱外科杂志  2020, Vol.18 Issue(4): 273-277   PDF    
间充质干细胞向髓核分化研究进展
牛永涛1, 谢林2, 席志鹏2, 邓蓉蓉2     
1. 南京中医药大学第三临床医学院研究生院, 南京 230038;
2. 江苏省中西医结合医院骨科, 南京 230038
关键词: 间质干细胞    骨髓    细胞分化    综述文献    
Research progress in differentiation of marrow mesenchymal stem cells into nucleus pulposus
NIU Yong-tao1, XIE Lin2, XI Zhi-peng2, DENG Rong-rong2     
1. Department of Graduate School, Third Clinical College of Nanjing University of Chinese Medicine, Nanjing 230038, Jangsu, China;
2. Department of Orthopaedics, Jiangsu Province Hospital on Traditional of Chinese and Western Medicine, Nanjing 230038, Jangsu, China
Key words: Mesenchymal stem cells    Bone marrow    Cell differentiation    Review literature    

椎间盘退行性变为下腰痛的重要原因之一[1]。非手术或手术治疗均不能彻底治愈椎间盘退行性变,且有复发的可能[2-3]。间充质干细胞(MSCs)具有体外扩增及分化成正常组织的潜能,在一定的诱导条件下可以向成骨、成软骨、成脂及髓核细胞分化,且具有免疫原性低和免疫调节性的特点[4-7],一直是组织修复研究的热点。近年来,诱导MSCs向髓核分化,用于修复椎间盘退行性变备受关注,并且在体内及体外实验证实具有可行性[8-10]。本文回顾分析近年MSCs向髓核分化的相关研究,从常用髓核细胞鉴定表型及MSCs向髓核分化的诱导方式等方面展开分析,现综述如下。

1 常用髓核细胞鉴定表型

目前无特异性细胞表型可以确定髓核细胞。Lee等[11]的研究显示,Ⅱ型胶原蛋白(COLⅡ)、蛋白多糖、SOX-9是髓核细胞与软骨细胞共同具有的基因表型,鉴定髓核细胞主要参考这3种基因的表达差异。近年来,有学者试图通过比较软骨细胞与髓核细胞基因表达差异,寻找髓核细胞较为特异性的基因来区别两者,用以鉴定髓核细胞。Liu等[12]从6例接受腰椎融合术治疗的患者体内取出椎间盘组织,并成功分离出正常髓核细胞并培养。KRT18和KRT19为人类脊索特异性标志物,常作为鉴定髓核细胞的阳性标志物[13-14]。KRT19可作为髓核细胞鉴定的特有基因用于描述髓核细胞的特征[15-16]。PAX1与FOXF1作为鉴定髓核细胞新的阳性表型在MSCs向髓核分化研究中广泛应用,PAX1参与胚胎期调节椎间盘生成,FOXF1与椎间盘细胞生长、增殖有关,SHH信号轴激活PAX1、FOXF1的基因表达[17]。在一项髓核细胞与软骨细胞的比较研究中,发现髓核细胞中KRT18、KRT19、PAX1及FOXF1的含量远多于软骨细胞[18]

2 MSCs向髓核分化方式 2.1 生长因子

细胞的生长因子在组织工程中发挥着重要作用,通过自分泌、旁分泌及内分泌促进MSCs向髓核分化。其中转化生长因子-β(TGF-β)家族广泛存在于组织细胞中,具有调节细胞生长、分化、凋亡及细胞外基质合成的作用。TGF-β家族在修复椎间盘退行性变中发挥着重要作用,研究表明,TGF-β具有促进MSCs向髓核分化的作用,修复发生退行性变的椎间盘,延缓椎间盘退行性变进程,降低髓核细胞的凋亡率[19]。Tao等[20]的实验研究中,骨髓MSCs被包封于葡聚糖/明胶水凝胶中的控释给药系统,以TGF-β3纳米粒为载体移植至发生退行性变的椎间盘,实验结果表明,TGF-β3具有诱导MSCs向髓核分化的作用,可帮助修复发生退行性变的椎间盘。骨形态发生蛋白(BMP)联合TGF-β1可促进MSCs增殖及糖胺聚糖(GAG)、蛋白多糖、COLⅡ、SOX-9、KRT19的表达增加[21]。此外,胰岛素样生长因子、表皮生长因子、血小板衍生生长因子等都具有促进MSCs分化的能力。椎间盘内具有多种生长因子,这些生长因子参与细胞的增殖及分化,在椎间盘退行性变的修复中发挥重要作用,正是这些生长因子的存在,使得MSCs移植修复发生退行性变的椎间盘成为可能。但是生长因子诱导MSCs向髓核分化修复发生退行性变的椎间盘确切机制尚不清楚,有待进一步研究。

2.2 共培养

MSCs与髓核细胞共培养可促进MSCs向髓核分化,有助于修复发生退行性变的椎间盘。Ouyang等[22]将人MSCs及人髓核细胞按1:1共培养后,COLⅡ、蛋白多糖及GAG的表达增加。Arkesteijn等[23]将MSCs与髓核细胞共培养在海藻酸钠微球中,GAG的表达增加,在髓核细胞附近观察到蛋白多糖的沉积。Strassburg等[24]比较了MSCs分别与发生退行性变的髓核细胞及正常髓核细胞共培养,认为与发生退行性变的髓核细胞共培养更利于MSCs向髓核分化,蛋白多糖、COLⅡ、SOX-9表达较正常髓核共培养显著增加,同时增加了软骨源性形态发生蛋白1(CDMP-1)、TGF-β1、胰岛素样生长因子1(IGF-1)和结缔组织生长因子(CTGF)基因的表达。Lehmann等[25]把MSCs与正常髓核细胞共培养后,发现TGF-β1表达升高并参与细胞间通信。MSCs与髓核细胞相互作用,促进了MSCs的表达谱向髓核细胞基因型转化,可能是髓核细胞分泌的细胞因子刺激了MSCs向髓核细胞的分化,同时,MSCs可能对发生退行性变的髓核细胞具有营养作用。

2.3 低氧

椎间盘内是一个特殊的低氧环境,髓核细胞在特殊低氧环境下具有正常繁殖及更新的能力,有学者根据这一特性,在模拟的低氧环境下诱导MSCs向髓核分化。Hudson等[26]报道了MSCs在低氧(5% O2)和常氧下向髓核分化的实验结果,低氧条件促进MSCs向髓核分化,GAG及胶原蛋白表达增加。Stoyanov等[27]的研究显示,在低氧条件及TGF-5作用下,COLⅡ、蛋白多糖、KRT19及GAG表达增加,认为在低氧条件及TGF-5作用下更有利于MSCs向髓核分化。Feng等[28]在研究低氧和支架构筑对兔MSCs向髓核分化的影响时发现,在低氧三维支架中,COLⅡ、蛋白多糖、SOX-9及GAG表达增加,同时低氧诱导因子-1α(HIF-1α)增加,认为MSCs低氧三维支架可用于椎间盘内移植,修复发生退行性变的椎间盘。Cui等[29]采用低氧联合含有TGF-β1的三维支架诱导MSCs向髓核分化,发现在低氧(2% O2)条件下,COLⅡ、蛋白多糖、SOX-9和HIF-1α表达增加,认为含TGF-β1的静电纺丝纳米纤维支架支持MSCs在低氧下向髓核分化,是髓核再生的一种较为合适的选择。Ni等[30]在低氧诱导胚胎源性干细胞向髓核细胞分化的研究中发现,低氧可促进MSCs增殖及向髓核分化,表现为髓核细胞标志物COLⅡ、蛋白多糖、SOX-9及HIF-1α表达增加。体外低氧条件模拟了椎间盘的低氧环境,在低氧微环境中,MSCs可向髓核表型分化,并且HIF-1α表达增加,进一步证明低氧环境促进MSCs向髓核细胞分化的可行性。

2.4 三维支架

支架材料可以为MSCs提供三维的生长环境,避免了单层细胞培养的弊端,使细胞间形成适宜的空间分布和良好的联系,提供特殊的生长和分化信号,维持细胞的定向分化并维持表型。Vaudreuil等[9]采用MSCs光聚合生物凝胶支架修复椎间盘退行性变,MRI示髓核的基质改善,组织学检查示凝胶组细胞增多,椎间盘退行性变减轻。Thorpe等[31]将MSCs及水凝胶一起注射到退行性变的椎间盘,注射后水凝胶与周围髓核组织结合,促进了MSCs向髓核分化,可以恢复腰椎的力学功能。Smith等[32]将MSCs接种于三维互穿网络水凝胶的体外研究发现,蛋白多糖、COLⅡ和GAG表达增加。Naqvi等[33]比较藻酸盐和壳聚糖水凝胶中骨髓MSCs向髓核分化差异,结果显示,壳聚糖水凝胶可调节GAG和胶原的表达;与壳聚糖相比,海藻酸钠能更好地支持MSCs中GAG和COLⅡ表达。陈春等[34]介绍了采用明胶微支架装载MSCs移植治疗犬退行性变椎间盘比单纯MSCs移植疗效更佳。三维支架可对MSCs起保护和支持作用,相当于细胞外基质,三维支架结构可容纳更多的细胞,使细胞有更多的接触机会,增加了细胞间的信号传递。同时,利用三维支架作为载体,与MSCs一起注射移植,为微创治疗椎间盘退行性变提供了方便。但如何让三维支架具有良好的生物可降解性,并且在组织形成过程中逐步降解而不影响正常组织生长及功能,仍是目前亟待解决的问题。

2.5 其他

有学者给予MSCs一定的应力,促进MSCs向髓核分化。Gan等[35]发现,给予MSCs较低压缩负荷(5%)时,MSCs向髓核分化被促进,蛋白多糖、COLⅡ、SOX-9及GAG表达增加。Luo等[36]模拟微重力诱导MSCs向髓核分化,结果显示,微重力下蛋白多糖、COLⅡ、SOX-9的表达增加,MSCs向髓核分化得到促进。Yan等[37]将不同浓度丹酚酸b联合MSCs移植入新西兰家兔椎间盘内,发现8周后蛋白多糖、COLⅡ的表达增加,结果提示丹酚酸b(1 ~ 10 mg/L)联合MSCs移植修复椎间盘退行性变较单纯MSCs移植更有效。还有部分学者将MSCs应用于临床,如Henriksson等[38]将MSCs移植入4位志愿者退行性变的椎间盘中,发现COLⅡ及SOX-9表达增加,表明MSCs向髓核分化。

3 结语和展望

应用组织工程修复退行性变椎间盘已成为目前研究热点,各种方式诱导MSCs向髓核分化在一定程度上取得了效果。使退行性变的椎间盘再生是未来修复椎间盘退行性变的理想手段。但由于椎间盘特有的生物力学性能及生理环境,目前大部分研究尚停留在实验阶段,还不能应用于临床。另外,目前也没有确切有效的鉴定髓核细胞的方法,不能形成统一有效的鉴定标准,在髓核细胞鉴定方面尚有不足。由于大部分诱导MSCs向髓核分化的研究仅有纵向比较,少有横向的各种诱导方式之间的比较,故各种诱导方式之间差别目前尚不清楚,亦没有形成一套安全、有效、稳定的诱导方案。后续研究可考虑对各种诱导方案通过体内外实验进行横向比较,总结筛选出一套安全、合理、有效的方案,通过临床试验取得临床资料,再次总结优化,最终在临床推广。

参考文献
[1]
Katz JN. Lumbar disc disorders and low-back pain:socioeconomic factors and consequences[J]. J Bone Joint Surg Am, 2006, 88(Suppl 2): 21-24.
[2]
Eck JC, Humphreys SC, Lim TH, et al. Biomechanical study on the effect of cervical spine fusion on adjacent-level intradiscal pressure and segmental motion[J]. Spine(Phila Pa 1976), 2002, 27(22): 2431-2434. DOI:10.1097/00007632-200211150-00003
[3]
Lund T, Oxland TR. Adjacent level disk disease-is it really a fusion disease?[J]. Orthop Clin North Am, 2011, 42(4): 529-541. DOI:10.1016/j.ocl.2011.07.006
[4]
蒋涛, 任先军, 阴洪, 等. 大鼠骨髓间充质干细胞分离培养及多向分化研究的体外实验[J]. 脊柱外科杂志, 2013, 11(5): 303-307. DOI:10.3969/j.issn.1672-2957.2013.05.011
[5]
Tian Y, Yuan W, Li J, et al. TGFβ regulates Galectin-3 expression through canonical Smad3 signaling pathway in nucleus pulposus cells:implications in intervertebral disc degeneration[J]. Matrix Biol, 2016, 50: 39-52. DOI:10.1016/j.matbio.2015.11.008
[6]
侯洋, 史建刚, 袁文, 等. 骨形态发生蛋白2和富血小板血浆凝胶对兔骨髓间充质干细胞体外成软骨分化的影响[J]. 脊柱外科杂志, 2016, 14(6): 356-361. DOI:10.3969/j.issn.1672-2957.2016.06.008
[7]
Shim EK, Lee JS, Kim DE, et al. Autogenous mesenchymal stem cells from the vertebral body enhance intervertebral disc regeneration via paracrine interaction:an in vitro pilot study[J]. Cell Transplant, 2016, 25(10): 1819-1832.
[8]
Kumar H, Ha DH, Lee EJ, et al. Safety and tolerability of intradiscal implantation of combined autologous adipose-derived mesenchymal stem cells and hyaluronic acid in patients with chronic discogenic low back pain:1-year follow-up of a phase Ⅰ study[J]. Stem Cell Res Ther, 2017, 8(1): 262.
[9]
Vaudreuil N, Henrikson K, Pohl P, et al. Photopolymerizable biogel scaffold seeded with mesenchymal stem cells:safety and efficacy evaluation of novel treatment for intervertebral disc degeneration[J]. J Orthop Res, 2019, 37(6): 1451-1459. DOI:10.1002/jor.24208
[10]
Subhan RA, Puvanan K, Murali MR, et al. Fluoroscopy assisted minimally invasive transplantation of allogenic mesenchymal stromal cells embedded in HyStem reduces the progression of nucleus pulposus degeneration in the damaged ntervertebral[corrected] disc:a preliminary study in rabbits[J]. Scientific World Journal, 2014, 2014: 818502.
[11]
Lee CR, Sakai D, Nakai T, et al. A phenotypic comparison of intervertebral disc and articular cartilage cells in the rat[J]. Eur Spine J, 2007, 16(12): 2174-2185. DOI:10.1007/s00586-007-0475-y
[12]
Liu S, Liang H, Lee SM, et al. Isolation and identification of stem cells from degenerated human intervertebral discs and their migration characteristics[J]. Acta Biochim Biophys Sin(Shanghai), 2017, 49(2): 101-109.
[13]
Risbud MV, Schoepflin ZR, Mwale F, et al. Defining the phenotype of young healthy nucleus pulposus cells:recommendations of the Spine Research Interest Group at the 2014 annual ORS meeting[J]. J Orthop Res, 2015, 33(3): 283-293.
[14]
Rodrigues-Pinto R, Berry A, Piper-Hanley K, et al. Spatiotemporal analysis of putative notochordal cell markers reveals CD24 and keratins 8, 18, and 19 as notochord-specific markers during early human intervertebral disc development[J]. J Orthop Res, 2016, 34(8): 1327-1340. DOI:10.1002/jor.23205
[15]
Rutges J, Creemers LB, Dhert W, et al. Variations in gene and protein expression in human nucleus pulposus in comparison with annulus fibrosus and cartilage cells:potential associations with aging and degeneration[J]. Osteoarthritis Cartilage, 2010, 18(3): 416-423. DOI:10.1016/j.joca.2009.09.009
[16]
Thorpe AA, Binch AL, Creemers LB, et al. Nucleus pulposus phenotypic markers to determine stem cell differentiation:fact or fiction?[J]. Oncotarget, 2016, 7(3): 2189-2200. DOI:10.18632/oncotarget.6782
[17]
Minogue BM, Richardson SM, Zeef LA, et al. Characterization of the human nucleus pulposus cell phenotype and evaluation of novel marker gene expression to define adult stem cell differentiation[J]. Arthritis Rheum, 2010, 62(12): 3695-3705. DOI:10.1002/art.27710
[18]
Yang H, Wu J, Liu J, et al. Transplanted mesenchymal stem cells with pure fibrinous gelatin-transforming growth factor-beta1 decrease rabbit intervertebral disc degeneration[J]. Spine J, 2010, 10(9): 802-810. DOI:10.1016/j.spinee.2010.06.019
[19]
Bian Z, Sun J. Development of a KLD-12 polypeptide/TGF-β1-tissue scaffold promoting the differentiation of mesenchymal stem cell into nucleus pulposus-like cells for treatment of intervertebral disc degeneration[J]. Int J Clin Exp Pathol, 2015, 8(2): 1093-1103. DOI:10.1007/s11051-015-3017-2
[20]
Tao Y, Zhou X, Liang C, et al. TGF-β3 and IGF-1 synergy ameliorates nucleus pulposus mesenchymal stem cell differentiation towards the nucleus pulposus cell type through MAPK/ERK signaling[J]. Growth Factors, 2015, 33(5-6): 326-336. DOI:10.3109/08977194.2015.1088532
[21]
Zhou X, Tao Y, Liang C, et al. BMP3 alone and together with TGF-β promote the differentiation of human mesenchymal stem cells into a nucleus pulposus-like phenotype[J]. Int J Mol Sci, 2015, 16(9): 20344-20359. DOI:10.3390/ijms160920344
[22]
Ouyang A, Cerchiari AE, Tang X, et al. Effects of cell type and configuration on anabolic and catabolic activity in 3D co-culture of mesenchymal stem cells and nucleus pulposus cells[J]. J Orthop Res, 2017, 35(1): 61-73.
[23]
Arkesteijn IT, Smolders LA, Spillekom S, et al. Effect of coculturing canine notochordal, nucleus pulposus and mesenchymal stromal cells for intervertebral disc regeneration[J]. Arthritis Res Ther, 2015, 17: 60. DOI:10.1186/s13075-015-0569-6
[24]
Strassburg S, Richardson SM, Freemont AJ, et al. Co-culture induces mesenchymal stem cell differentiation and modulation of the degenerate human nucleus pulposus cell phenotype[J]. Regen Med, 2010, 5(5): 701-711. DOI:10.2217/rme.10.59
[25]
Lehmann TP, Jakub G, Harasymczuk J, et al. Transforming growth factor β mediates communication of co-cultured human nucleus pulposus cells and mesenchymal stem cells[J]. J Orthop Res, 2018, 36(11): 3023-3032. DOI:10.1002/jor.24106
[26]
Hudson KD, Bonassar LJ. Hypoxic expansion of human mesenchymal stem cells enhances three-dimensional maturation of tissue-engineered intervertebral discs[J]. Tissue Eng Part A, 2017, 23(7-8): 293-300. DOI:10.1089/ten.tea.2016.0270
[27]
Stoyanov JV, Gantenbein-Ritter B, Bertolo A, et al. Role of hypoxia and growth and differentiation factor-5 on differentiation of human mesenchymal stem cells towards intervertebral nucleus pulposus-like cells[J]. Eur Cell Mater, 2011, 21: 533-547. DOI:10.22203/eCM.v021a40
[28]
Feng G, Jin X, Hu J, et al. Effects of hypoxias and scaffold architecture on rabbit mesenchymal stem cell differentiation towards a nucleus pulposus-like phenotype[J]. Biomaterials, 2011, 32(32): 8182-8189. DOI:10.1016/j.biomaterials.2011.07.049
[29]
Cui X, Liu M, Wang J, et al. Electrospun scaffold containing TGF-β1 promotes human mesenchymal stem cell differentiation towards a nucleus pulposus-like phenotype under hypoxia[J]. IET Nanobiotechnol, 2015, 9(2): 76-84. DOI:10.1049/iet-nbt.2014.0006
[30]
Ni L, Liu X, Sochacki KR, et al. Effects of hypoxia on differentiation from human placenta-derived mesenchymal stem cells to nucleus pulposus-like cells[J]. Spine J, 2014, 14(10): 2451-2458.
[31]
Thorpe AA, Dougill G, Vickers L, et al. Thermally triggered hydrogel injection into bovine intervertebral disc tissue explants induces differentiation of mesenchymal stem cells and restores mechanical function[J]. Acta Biomater, 2017, 54: 212-226. DOI:10.1016/j.actbio.2017.03.010
[32]
Smith LJ, Gorth DJ, Showalter BL, et al. In vitro characterization of a stem-cell-seeded triple-interpenetrating-network hydrogel for functional regeneration of the nucleus pulposus[J]. Tissue Eng Part A, 2014, 20(13-14): 1841-1849. DOI:10.1089/ten.tea.2013.0516
[33]
Naqvi SM, Buckley CT. Differential response of encapsulated nucleus pulposus and bone marrow stem cells in isolation and coculture in alginate and chitosan hydrogels[J]. Tissue Eng Part A, 2015, 21(1-2): 288-299. DOI:10.1089/ten.tea.2013.0719
[34]
陈春, 何凡, 金广建, 等. 新型微支架装载脂肪间充质干细胞移植修复椎间盘退行性变[J]. 脊柱外科杂志, 2019, 17(2): 110-115. DOI:10.3969/j.issn.1672-2957.2019.02.008
[35]
Gan Y, Tu B, Li P, et al. Low magnitude of compression enhances biosynthesis of mesenchymal stem cells towards nucleus pulposus cells via the TRPV4-dependent pathway[J]. Stem Cells Int, 2018, 2018: 7061898.
[36]
Luo W, Xiong W, Qiu M, et al. Differentiation of mesenchymal stem cells towards a nucleus pulposus-like phenotype utilizing simulated microgravity in vitro[J]. J Huazhong Univ Sci Technolog Med Sci, 2011, 31(2): 199. DOI:10.1007/s11596-011-0252-3
[37]
Yan HS, Hang C, Chen SW, et al. Salvianolic acid B combined with mesenchymal stem cells contributes to nucleus pulposus regeneration[J]. Connect Tissue Res, 2019, 26: 1-10.
[38]
Henriksson HB, Papadimitriou N, Hingert D, et al. The traceability of mesenchymal stromal cells after injection into degenerated discs in patients with low back pain[J]. Stem Cells Dev, 2019, 28(17): 1203-1211. DOI:10.1089/scd.2019.0074