脊柱外科杂志  2023, Vol.21 Issue(5): 289-295   PDF    
椎管扩大椎板成形术联合MRI T2加权像髓内高信号节段单侧侧块螺钉内固定治疗多节段脊髓型颈椎病
窦一博, 魏磊鑫, 黄迟, 王永立, 徐辰, 胡博, 沈晓龙, 田野, 陈华江, 袁文, 曹鹏     
海军军医大学长征医院骨科, 上海 200003
摘要: 目的 探讨椎管扩大椎板成形术联合MRI T2加权像髓内高信号(ISI)节段单侧侧块螺钉内固定治疗多节段脊髓型颈椎病(MCSM)的临床疗效。方法 2015年1月—2019年1月收治伴MRI T2加权像髓内ISI的MCSM患者59例,其中26例采用椎管扩大椎板成形术联合MRI T2加权像髓内ISI节段单侧侧块螺钉内固定治疗(A组),33例采用单纯椎管扩大椎板成形术治疗(B组)。记录2组手术时间、术中出血量及并发症发生情况。采用日本骨科学会(JOA)评分及其改善率评价神经功能状态。在颈椎X线片上测量C2~7 Cobb角,计算颈椎整体活动度(ROM)。测量髓内信号改变比值(SCR=ISI区域光密度值/C7~T1正常区域光密度值),定量评估髓内ISI程度,并进一步分析SCR变化值对JOA评分及其改善率的影响。结果 所有手术顺利完成。2组手术时间、术中出血量差异无统计学意义(P>0.05)。A组术后JOA评分及其改善率、术后SCR及其变化值明显高于B组,差异均有统计学意义(P<0.05)。2组术后C2~7 Cobb角、颈椎整体ROM及其保留率差异无统计学意义(P>0.05)。2组并发症发生率差异无统计学意义(P>0.05)。SCR变化值显著改变组的JOA评分改善率最高,中度改变组次之,轻度改变组最低,3组间两两相比,JOA评分改善率差异均有统计学意义(P<0.05)。结论 对于伴MRI T2加权像髓内ISI的MCSM患者,椎管扩大椎板成形术联合MRI T2加权像髓内ISI节段单侧侧块螺钉内固定具有较好的临床和影像学结果,尤其在术后髓内ISI的改善方面具有一定优势。
关键词: 颈椎    颈椎病    减压术,外科    内固定器    
Expansive laminoplasty combined with unilateral lateral mass screw fixation at intramedullary MRI T2-weighted increased signal intensity segment for treatment of multi-segment cervical spondylotic myelopathy
Dou Yibo, Wei Leixin, Huang Chi, Wang Yongli, Xu Chen, Hu Bo, Shen Xiaolong, Tian Ye, Chen Huajiang, Yuan Wen, Cao Peng     
Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
Abstract: Objective To investigate the clinical efficacy of expansive laminoplasty combined with unilateral lateral mass screw fixation at MRI T2-weighted intramedullary increased signal intensity(ISI) segment for treatment of multi-segment cervical spondylotic myelopathy(MCSM). Methods From January 2015 to January 2019, 59 patients with MCSM accompanied with MRI T2-weighted intramedullary ISI were admitted. Among them, 26 patients underwent laminoplasty combined with unilateral lateral mass screw fixation at MRI T2-weighted intramedullary ISI segment(group A), while 33 underwent laminoplasty alone(group B). The operation time, intraoperative blood loss and complications were recorded in the 2 groups. The neurological function was evaluated by the Japanese Orthopaedic Association(JOA) score and its improvement rate. C2-7 Cobb angle were measured on roentgenographs, cervical overall range of motion(ROM) was calculated. Signal change ratio(SCR=ISI area optical density value/C7-T1 normal area optical density value) was measured to evaluate ISI lesion degree. The effect of SCR variation on JOA score and its improvement rate was further analyzed. Results All the operations were completed successfully. There was no significant difference in operation time and intraoperative blood loss between the 2 groups(P>0.05). JOA score and its improvement rate, SCR and its change value in group A were significantly higher than those in group B, all with a statistical significance(P<0.05). There was no significant difference in C2-7 Cobb angle, cervical ROM and its retention rate between the 2 groups(P>0.05). There was no significant difference in the incidence of complications between the 2 groups(P>0.05). The improvement rate of JOA score in the obviously changed SCR group was the highest, followed by the moderately changed group, and the mildly changed group was the lowest. Pairwise comparison among the 3 groups showed significant differences in improvement rate of JOA score(P<0.05). Conclusion For MCSM patients with MRI T2-weighted intramedullary ISI, laminoplasty combined with unilateral lateral mass screw fixation at MRI T2-weighted intramedullary ISI segment has good clinical and imaging results, especially in improving postoperative intramedullary ISI.
Key words: Cervical vertebrae    Cervical spondylosis    Decompression, surgical    Internal fixators    

脊髓型颈椎病(CSM)是中老年常见的颈椎退行性疾病,可引起脊髓神经功能的逐步恶化,严重影响患者生活质量[1-3]。MRI是诊断和评估CSM的重要影像学方法,可以反映脊髓受压程度、范围及髓内信号改变等情况[4]。CSM患者脊髓受到长时间慢性压迫,受压节段脊髓常存在持续的微小运动刺激,导致在MRI T2加权像表现为髓内高信号(ISI)[5]。髓内ISI反映了一系列的脊髓病理改变,如水肿、炎性反应、脊髓软化和神经胶质增生等[6]。尽管髓内ISI的临床意义仍存有一定争议,但有学者[7-11]认为其对CSM的手术预后具有负面影响。对于多节段CSM(MCSM)而言,椎管扩大椎板成形术是常见的手术治疗方式,其既能获得较满意的脊髓间接减压效果,又能在一定程度上保留颈椎的运动功能[12]。然而,受压节段脊髓的持续微小运动刺激是髓内ISI发生的重要原因。本研究组前期相关研究[13-16]结果提示,单纯采用椎管扩大椎板成形术治疗伴髓内ISI的MCSM,手术效果与前路融合手术相比欠佳,其原因可能是受压节段的反复活动刺激不利于髓内ISI术后的恢复。因此,椎管扩大椎板成形术联合髓内ISI节段单侧侧块螺钉内固定可能是治疗伴MRI T2加权像髓内ISI的MCSM的有效术式。基于此,本研究对椎管扩大椎板成形术联合髓内ISI节段单侧侧块螺钉内固定与单纯椎管扩大椎板成形术治疗伴髓内ISI的MCSM的临床及影像学结果进行对比分析,并进一步评估髓内ISI与手术预后的关系,探索该类疾病手术方式的选择策略。

1 资料与方法 1.1 一般资料

纳入标准: ①年龄>18岁;②临床症状和体征符合MCSM诊断标准;③术前均行颈椎正侧位及过伸过屈侧位X线、颈椎CT和颈椎MRI检查,影像学资料示3个及以上节段颈脊髓受压,MRI T2加权像髓内ISI。排除标准: ①髓内ISI范围超过2个椎体;②合并连续的颈椎后纵韧带骨化;③合并急性脊髓损伤;④合并类风湿关节炎、脑瘫或肿瘤等疾病;⑤既往有颈椎手术史;⑥合并先天性颈椎发育畸形、脊髓空洞症;⑦合并其他系统、器官严重功能障碍。根据上述标准,纳入2015年1月—2019年收治的伴MRI T2加权像髓内ISI的MCSM患者59例,其中26例采用椎管扩大椎板成形术联合MRI T2加权像髓内ISI节段单侧侧块螺钉内固定治疗(A组),33例采用单纯椎管扩大椎板成形术治疗(B组)。手术由同一主刀医师和手术团队完成。2组患者术前一般资料差异无统计学意义(P>0.05,表 1),具有可比性。

表 1 2组患者一般资料 Tab. 1 General data of patients in 2 groups
1.2 手术方法

2组患者全身麻醉后留置导尿。B组患者取俯卧位,头部由头架固定,无须牵引。颈部术区常规消毒,做颈后部正中纵向切口,切开皮肤、皮下、筋膜及项韧带,逐层电凝止血。沿棘突两侧骨膜下剥离椎旁肌,显露椎板至侧块处,使用尖嘴咬骨钳在双侧椎板侧块移行处各开1个平行于棘突的骨槽,通常选择狭窄程度较重或神经症状较重的一侧作为开门侧,对侧为铰链侧,将椎板以铰链侧为中心掀开并维持,开门宽度为10 mm,探查无明显致压后置入10 mm微型Arch钛板固定并维持椎板开门状态。术中透视确认钛板和螺钉位置良好后使用大量生理盐水冲洗,检查创腔无明显出血点后切口旁放置负压引流管,逐层缝合切口。A组患者在完成单开门椎管扩大椎板成形术的基础上,使用单侧侧块螺钉对髓内ISI节段进行内固定。

1.3 评价指标

记录2组手术时间、术中出血量及并发症(感染、C5神经根麻痹、轴性症状等)发生情况。采用日本骨科学会(JOA)评分[17]及其改善率评价神经功能状态。JOA评分改善率(%)=(术后JOA评分-术前JOA评分)/(17-术前JOA评分)×100%。在颈椎中立位和最大屈伸位X线片上测量C2~7 Cobb角,计算颈椎整体活动度(ROM)[12],ROM保留率(%)=术后ROM/术前ROM×100%;测量信号改变比值(SCR)[18]用于定量评估ISI病变程度,在颈椎矢状位MRI上ISI区域最明显处取面积为0.1 cm2的兴趣区测量其累计光密度值,于同一矢状位C7~T1水平正常信号强度处取相同面积的兴趣区测量累计光密度值,SCR=ISI区域光密度值/C7~T1正常区域光密度值。所有影像学数据均由2名经验丰富的脊柱外科医师采用Image J图像处理软件进行测量分析。

1.4 统计学处理

采用SPSS 18.0软件对数据进行统计分析,符合正态分布的计量资料以x±s表示,组间比较采用独立样本t检验;计数资料以例数和百分数表示,组间比较采用χ2检验;组间SCR变化值比较采用单因素方差分析。以P<0.05为差异有统计学意义。

2 结果

所有手术顺利完成,所有患者随访时间≥24个月。A组侧块螺钉内固定: C3,4节段4例,C4,5节段7例,C5,6节段9例,C6,7节段6例。2组手术时间、术中出血量差异无统计学意义(P>0.05,表 2)。A组术后JOA评分及其改善率、术后SCR及其变化值明显高于B组,差异均有统计学意义(P<0.05,表 2)。2组术后C2~7 Cobb角、颈椎整体ROM及其保留率差异无统计学意义(P>0.05,表 2)。A组发生C5神经根麻痹2例,轴性症状2例,并发症发生率为15.4%;B组发生C5神经根麻痹2例,轴性症状3例,并发症发生率为15.2%;2组术后并发症发生率差异无统计学意义(P>0.05)。所有患者均未发生感染、脑脊液漏等其他并发症。2组典型病例影像学资料见图 12

表 2 2组评价指标比较 Tab. 2 Comparison of evaluation indicators between 2 groups

图 1 A组典型病例影像学资料 Fig. 1 Imaging data of a typical case in group A a、b:  术前侧位X线片、矢状位MRI T2加权像示多节段颈脊髓受压,C4,5节段髓内ISI  c、d:  末次随访时侧位X线片、矢状位MRI T2加权像示术后脊髓减压充分,置入物位置良好,SCR改善明显 a, b: Preoperative lateral roentgenograph and sagittal T2-weighted MRI show multi-level cervical spinal cord compression, and intramedullary ISI at C4, 5 segments c, d: Lateral roentgenograph and sagittal T2-weighted MRI at final follow-up show sufficient spinal decompression, good position of implants, and significant improvement of SCR

图 2 B组典型病例影像学资料 Fig. 2 Imaging data of a typical case in group B a、b:  术前侧位X线片、矢状位MRI T2加权像示多节段颈脊髓受压,C4,5节段髓内ISI  c、d:  末次随访时侧位X线片、矢状位MRI T2加权像示术后脊髓减压充分,置入物位置良好,SCR轻度改善 a, b: Preoperative lateral roentgenograph and sagittal T2-weighted MRI show multi-level cervical spinal cord compression, and intramedullary ISI at C4, 5 segments c, d: Lateral roentgenograph and sagittal T2-weighted MRI at final follow-up show sufficient spinal decompression, good position of implants, and mild improvement of SCR

进一步分析SCR变化值对JOA评分及其改善率的影响。按照SCR变化值分为3组,轻度改变组(SCR变化值≤0.1),中度改变组(SCR变化值> 0.1且≤0.2),显著改变组(SCR变化值> 0.2)。显著改变组的JOA评分改善率最高,中度改变组次之,轻度改变组最低,3组间两两相比,JOA评分改善率差异均有统计学意义(P<0.05,表 3)。

表 3 SCR变化值对JOA评分改善率的影响 Tab. 3 Effects of SCR variation on JOA score improvement rate
3 讨论 3.1 伴髓内ISI的MCSM的手术治疗

1987年,Takahashi等[19]首次提出髓内ISI概念,随后受到了广泛的关注和研究。有研究[5]显示,58%~85%的CSM患者出现髓内ISI,其反映了脊髓的水肿、炎性反应、缺血、坏死及胶质增生等急慢性病理改变[20-23]。虽然现有研究关于髓内ISI的临床意义仍存有一定争议,但本研究组前期的研究和其他大多数研究结果均提示髓内ISI对CSM预后具有负面影响[24-27]。椎管扩大椎板成形术是治疗MCSM的常用术式,其原理是使脊髓在扩大的椎管中向背侧漂移进而实现间接减压。该术式可在一定程度上保留手术节段的运动功能[12, 28]。然而,脊髓在局部病变节段的慢性压迫和持续运动刺激是髓内ISI发生和发展的重要因素[16, 29-33]。本研究组的前期研究[13-16]发现,单纯应用椎管扩大椎板成形术治疗伴髓内ISI的MCSM,手术疗效与前路融合手术相比欠佳,其原因可能是受压节段的反复活动刺激不利于髓内ISI的恢复。Miyazaki等[14]的研究显示,椎管扩大椎板成形术后预后不良患者的脊髓病变节段ROM较大,反复轻微活动与脊髓损伤相关。Chen等[15]的研究显示,在双开门椎管扩大椎板成形术后1年,28.3%的患者出现了髓内ISI的加重,认为这些患者停止佩戴颈托后颈椎局部活动及不稳定性增加,导致了髓内ISI病灶脊髓再损伤。Yagi等[16]发现颈椎节段不稳是髓内ISI术后恶化的独立危险因素,其原因可能是局部节段不稳和活动导致脊髓反复微小损伤。因此,本研究组提出了一种改良术式,在单开门椎管扩大椎板成形术的基础上,对髓内ISI节段采用单侧侧块螺钉内固定。Uehara等[34]采用颈椎后路单开门椎管扩大椎板成形术联合椎弓根螺钉内固定治疗13例伴颈椎不稳的CSM患者,随访发现,所有患者神经功能改善满意,且不稳节段得到了良好固定。本研究结果亦显示,A组术后JOA评分及其改善率均优于B组。此外,本研究使用SCR对髓内ISI进行定量测量,结果显示,与B组相比,A组的术后SCR更低,SCR变化值更大。笔者总结原因可能有以下几个方面。①B组术后髓内ISI节段仍保留一定的ROM,微活动对病变部位产生刺激,不利于髓内ISI病灶及神经症状的恢复。②A组术后髓内ISI节段ROM显著小于B组,有效减轻了对病变部位的刺激。因此,笔者建议,对于伴髓内ISI的MCSM采用椎管扩大椎板成形术治疗时,无论髓内ISI节段有无不稳,均宜在髓内ISI节段行内固定,减少术后局部节段的活动,以利于髓内ISI病灶及神经症状的恢复。本研究结果显示,2组术后ROM及其保留率差异无统计学意义,可能与术后非固定节段的活动代偿增加有关。此外,2组患者术后并发症发生率差异亦无统计学意义。因此,对于伴髓内ISI的MCSM患者,椎管扩大椎板成形术联合MRI T2加权像髓内ISI节段单侧侧块螺钉内固定可能是一种较好的术式。

3.2 髓内ISI的术后变化与手术预后的关系

已有大量研究针对髓内ISI与神经功能障碍严重程度及手术预后的关系进行了研究,但研究结论尚未完全达成共识。黄飞等[35]的研究结果显示,伴髓内ISI的MCSM患者术后神经功能恢复较差。Li等[11]纳入了5项研究进行荟萃分析,结果显示,伴髓内ISI的CSM患者预后较差。Arvin等[36]的研究显示,CSM患者术前髓内ISI程度越高,手术预后越差。Machino等[4]的研究纳入337例行椎管成形术的CSM患者,结果提示,术后髓内ISI的改善可以较好地预测手术预后。Kato等[37]分析了167例退行性颈脊髓病患者术后髓内ISI的缓解情况,结果提示,髓内ISI的术后改善与神经功能改善呈正相关。Ikegami等[38]回顾性分析137例CSM患者术后的影像学和临床指标发现,术后1年时患者髓内ISI的改善提示术后5年的远期预后良好。本研究为进一步分析SCR变化值对JOA评分及其改善率的影响,按照SCR变化程度分为3组,结果显示,SCR变化显著组患者JOA评分改善率最高,轻度变化组患者JOA评分改善率最低,该结果与Kato等[37]和Machino等[4]的结论一致。术后髓内ISI缓解的情况能够在一定程度上反映患者术后的临床症状和手术疗效,髓内ISI改善越好,患者的预后越好,这也可能是本研究中A组JOA评分改善率更高的原因。本研究结果还显示,A组患者术后C2~7 Cobb角优于B组,原因可能为内固定有利于颈椎曲度的维持,但组间差异并无统计学意义;2组患者术后颈椎整体ROM保留率差异也无统计学意义,该结果与Machino等[4]的报道一致。

综上,对于伴髓内ISI的MCSM患者而言,椎管扩大椎板成形术联合MRI T2加权像髓内ISI节段单侧侧块螺钉内固定具有良好的临床和影像学结果,尤其在术后髓内ISI的改善方面具有优势。

参考文献
[1]
Badhiwala JH, Ahuja CS, Akbar MA, et al. Degenerative cervical myelopathy—update and future directions[J]. Nat Rev Neurol, 2020, 16(2): 108-124. DOI:10.1038/s41582-019-0303-0
[2]
Donnally CR, Patel PD, Canseco JA, et al. Current management of cervical spondylotic myelopathy[J]. Clin Spine Surg, 2022, 35(1): E68-E76. DOI:10.1097/BSD.0000000000001113
[3]
Wei L, Cao P, Xu C, et al. Clinical and radiologic results of anterior cervical discectomy and fusion for cervical spondylotic myelopathy in elderly patients with T2-weighted increased signal intensity[J]. World Neurosurg, 2018, 112: e520-e526. DOI:10.1016/j.wneu.2018.01.071
[4]
Machino M, Ando K, Kobayashi K, et al. Postoperative resolution of MR T2 increased signal intensity in cervical spondylotic myelopathy[J]. Spine(Phila Pa 1976), 2019, 44(21): E1241-E1247. DOI:10.1097/BRS.0000000000003128
[5]
Nouri A, Martin AR, Mikulis D, et al. Magnetic resonance imaging assessment of degenerative cervical myelopathy: a review of structural changes and measurement techniques[J]. Neurosurg Focus, 2016, 40(6): E5. DOI:10.3171/2016.3.FOCUS1667
[6]
Zhang JT, Meng FT, Wang S, et al. Predictors of surgical outcome in cervical spondylotic myelopathy: focusing on the quantitative signal intensity[J]. Eur Spine J, 2015, 24(12): 2941-2945. DOI:10.1007/s00586-015-4109-5
[7]
Notani N, Miyazaki M, Kanezaki S, et al. Surgical outcomes of laminoplasty for cervical spondylotic myelopathy in very elderly patients(older than 80 years): time from symptom onset to surgery and changes in spinal cord signal intensity on MRI[J]. Clin Neurol Neurosurg, 2017, 160: 78-82. DOI:10.1016/j.clineuro.2017.06.019
[8]
Vedantam A, Rajshekhar V. Change in morphology of intramedullary T2-weighted increased signal intensity after anterior decompressive surgery for cervical spondylotic myelopathy[J]. Spine(Phila Pa 1976), 2014, 39(18): 1458-1462. DOI:10.1097/BRS.0000000000000440
[9]
Vedantam A, Rajshekhar V. Does the type of T2-weighted hyperintensity influence surgical outcome in patients with cervical spondylotic myelopathy? A review[J]. Eur Spine J, 2013, 22(1): 96-106. DOI:10.1007/s00586-012-2483-9
[10]
Zhang P, Shen Y, Zhang Y, et al. Significance of increased signal intensity on MRI in prognosis after surgical intervention for cervical spondylotic myelopathy[J]. J Clin Neurosci, 2011, 18(8): 1080-1083. DOI:10.1016/j.jocn.2010.12.023
[11]
Li F, Chen Z, Zhang F, et al. A meta-analysis showing that high signal intensity on T2-weighted MRI is associated with poor prognosis for patients with cervical spondylotic myelopathy[J]. J Clin Neurosci, 2011, 18(12): 1592-1595. DOI:10.1016/j.jocn.2011.04.019
[12]
Machino M, Yukawa Y, Hida T, et al. Cervical alignment and range of motion after laminoplasty[J]. Spine(Phila Pa 1976), 2012, 37(20): E1243-E1250. DOI:10.1097/BRS.0b013e3182659d3e
[13]
魏磊鑫, 田野, 华东方, 等. 多节段脊髓型颈椎病伴髓内MRI T2WI高信号改变患者的手术入路选择及疗效分析[J]. 中国脊柱脊髓杂志, 2016, 26(2): 101-107.
[14]
Miyazaki M, Notani N, Ishihara T, et al. Surgical outcomes after laminoplasty for cervical spondylotic myelopathy: a focus on the dynamic factors and signal intensity changes in the intramedullary spinal cord on MRI[J]. Clin Neurol Neurosurg, 2017, 162: 108-114. DOI:10.1016/j.clineuro.2017.10.003
[15]
Chen X, Shan T, Li Y. Prognostic effect of increased postoperative MRI T2WI high signal intensity in degenerative cervical myelopathy[J]. Spine J, 2022, 22(12): 1964-1973. DOI:10.1016/j.spinee.2022.07.097
[16]
Yagi M, Ninomiya K, Kihara M, et al. Long-term surgical outcome and risk factors in patients with cervical myelopathy and a change in signal intensity of intramedullary spinal cord on magnetic resonance imaging[J]. J Neurosurg Spine, 2010, 12(1): 59-65. DOI:10.3171/2009.5.SPINE08940
[17]
Yonenobu K, Wada E, Tanaka T, et al. Japanese Orthopaedic Association Cervical Myelopathy Evaluation Questionnaire(JOACMEQ): part 2. Endorsement of the alternative item[J]. J Orthop Sci, 2007, 12(3): 241-248. DOI:10.1007/s00776-007-1119-0
[18]
Wei L, Cao P, Xu C, et al. Comparison of the prognostic value of different quantitative measurements of increased signal intensity on T2-weighted MRI in cervical spondylotic myelopathy[J]. World Neurosurg, 2018, 118: e505-e512. DOI:10.1016/j.wneu.2018.06.224
[19]
Takahashi M, Sakamoto Y, Miyawaki M, et al. Increased MR signal intensity secondary to chronic cervical cord compression[J]. Neuroradiology, 1987, 29(6): 550-556. DOI:10.1007/BF00350439
[20]
Wada E, Ohmura M, Yonenobu K. Intramedullary changes of the spinal cord in cervical spondylotic myelopathy[J]. Spine(Phila Pa1976), 1995, 20(20): 2226-2232.
[21]
Mehalic TF, Pezzuti RT, Applebaum BI. Magnetic resonance imaging and cervical spondylotic myelopathy[J]. Neurosurgery, 1990, 26(2): 217-226. DOI:10.1227/00006123-199002000-00006
[22]
Ramanauskas WL, Wilner HI, Metes JJ, et al. MR imaging of compressive myelomalacia[J]. J Comput Assist Tomogr, 1989, 13(3): 399-404. DOI:10.1097/00004728-198905000-00005
[23]
Al-mefty O, Harkey LH, Middleton TH, et al. Myelopathic cervical spondylotic lesions demonstrated by magnetic resonance imaging[J]. J Neurosurg, 1988, 68(2): 217-222. DOI:10.3171/jns.1988.68.2.0217
[24]
Xu Z, Xiao L, Liu C, et al. Correlation analysis of surgical efficacy and risk factors of cervical spondylotic myelopathy with high signal intensity on MRI-T2WI[J]. Curr Med Imaging, 2022, 19(2): 142-148.
[25]
Nouri A, Tetreault L, Dalzell K, et al. The relationship between preoperative clinical presentation and quantitative magnetic resonance imaging features in patients with degenerative cervical myelopathy[J]. Neurosurgery, 2017, 80(1): 121-128. DOI:10.1227/NEU.0000000000001420
[26]
Tetreault LA, Nouri A, Singh A, et al. Predictors of outcome in patients with cervical spondylotic myelopathy undergoing surgical treatment: asurvey of members from AOSpine International[J]. World Neurosurgery, 2014, 81(3-4): 623-633. DOI:10.1016/j.wneu.2013.09.023
[27]
Wei L, Wei Y, Tian Y, et al. Does three-grade classification of T2-weighted increased signal intensity reflect the severity of myelopathy and surgical outcomes in patients with cervical compressive myelopathy? A systematic review and meta-analysis[J]. Neurosurg Rev, 2020, 43(3): 967-976. DOI:10.1007/s10143-019-01106-3
[28]
Montano N, Ricciardi L, Olivi A. Comparison of anterior cervical decompression and fusion versus laminoplasty in the treatment of multilevel cervical spondylotic myelopathy: a meta-analysis of clinical and radiological outcomes[J]. World Neurosurg, 2019, 130: 530-536. DOI:10.1016/j.wneu.2019.06.144
[29]
Kozaki T, Yukawa Y, Hashizume H, et al. Clinical and radiographic characteristics of increased signal intensity of the spinal cord at the vertebral body level in patients with cervical myelopathy[J]. J Orthop Sci, 2022, S0949-2658(22)00297-4.
[30]
Lu K, Gao X, Tong T, et al. Clinical predictors of surgical outcomes and imaging features in single segmental cervical spondylotic myelopathy with lower cervical instability[J]. Med Sci Monit, 2017, 23: 3697-3705. DOI:10.12659/MSM.906046
[31]
Oshima Y, Seichi A, Takeshita K, et al. Natural course and prognostic factors in patients with mild cervical spondylotic myelopathy with increased signal intensity on T2-weighted magnetic resonance imaging[J]. Spine(Phila Pa 1976), 2012, 37(22): 1909-1913. DOI:10.1097/BRS.0b013e318259a65b
[32]
Yu L, Zhang Z, Ding Q, et al. Relationship between signal changes on T2-weighted magnetic resonance images and cervical dynamics in cervical spondylotic myelopathy[J]. J Spinal Disord Tech, 2015, 28(6): E365-E367. DOI:10.1097/BSD.0b013e31829993a8
[33]
Zhou H, Fan J, Sun P, et al. Correlation analysis between modic change of cervical vertebrae and intramedullary high signal intensity[J]. Clin Spine Surg, 2017, 30(9): E1298-E1305. DOI:10.1097/BSD.0000000000000508
[34]
Uehara M, Takahashi J, Ogihara N, et al. Cervical pedicle screw fixation combined with laminoplasty for cervical spondylotic myelopathy with instability[J]. Asian Spine J, 2012, 6(4): 241-248. DOI:10.4184/asj.2012.6.4.241
[35]
黄飞, 周晓文, 黄春福, 等. 术前MRI T2加权像髓内高信号对颈椎前路椎间盘切除融合术治疗多节段脊髓型颈椎病效果的影响[J]. 脊柱外科杂志, 2021, 19(3): 166-171.
[36]
Arvin B, Kalsi-ryan S, Karpova A, et al. Postoperative magnetic resonance imaging can predict neurological recovery after surgery for cervical spondylotic myelopathy: aprospective study with blinded assessments[J]. Neurosurgery, 2011, 69(2): 362-368. DOI:10.1227/NEU.0b013e31821a418c
[37]
Kato S, Nouri A, Reihani-kermani H, et al. Postoperative resolution of magnetic resonance imaging signal intensity changes and the associated impact on outcomes in degenerative cervical myelopathy[J]. Spine(Phila Pa 1976), 2018, 43(12): 824-831. DOI:10.1097/BRS.0000000000002426
[38]
Ikegami S, Takahashi J, Misawa H, et al. Spinal cord MRI signal changes at 1 year after cervical decompression surgery is useful for predicting midterm clinical outcome: an observational study using propensity scores[J]. Spine J, 2018, 18(5): 755-761. DOI:10.1016/j.spinee.2017.09.004