随着人口老龄化的加剧,腰椎退行性疾病(LDD)的发生率不断上升,其引起的腰痛、下肢痛及间歇性跛行等症状严重影响患者生活质量。后路腰椎椎间融合术(PLIF)是治疗LDD的主要术式之一,但该术式牺牲了脊柱融合节段的活动度(ROM),增加了相邻节段的应力,导致了相邻节段退行性变(ASD)的发生[1-5]。为了预防ASD的发生,棘突间动态稳定装置(Coflex)被应用于LDD的外科治疗,其可最大限度保留相应节段腰椎屈伸活动功能,减少术后ASD的发生[6-13]。因此,对于腰椎双节段退行性变患者,下位严重退行性变节段进行腰椎融合,结合上位轻中度退行性变并轻中度椎管狭窄且无不稳定节段Coflex固定的Topping-off手术应运而生,其可防止或减轻ASD,理论上是双节段PLIF的替代选择[1]。本研究对同期采用Topping-off术式及PLIF治疗的双节段LDD患者临床资料进行对比,以评估Topping-off手术治疗LDD的临床疗效。
1 资料与方法 1.1 一般资料纳入标准: ①确诊为腰椎椎间盘突出症或腰椎椎管狭窄症;②上位节段中度退行性变并中度腰椎椎管狭窄且无不稳定,下位节段严重退行性变;③非手术治疗6个月以上症状无明显缓解。排除标准: ①既往腰椎手术史;②严重骨质疏松、腰椎峡部裂、椎体发育畸形、腰椎滑脱、强直性脊柱炎、脊柱侧凸或后凸畸形、骨折、肿瘤、脊柱结核;③恶性肿瘤。根据上述标准,纳入2015年1月—2016年12月收治的双节段LDD患者41例,其中采用Topping-off手术治疗19例(topping-off组),采用传统PLIF治疗22例(PLIF组)。2组患者术前一般资料差异无统计学意义(P>0.05,表 1),具有可比性。
PLIF组患者全身麻醉后取俯卧位,采用后正中入路。保留棘上韧带,沿骨膜下剥离显露棘突、双侧椎板及关节突关节,注意保护上位邻近节段小关节囊。融合节段双侧置入万向椎弓根螺钉,选择合适长度的连接棒预弯后安装至螺钉尾帽,上、下节段椎间隙分别适当撑开后锁紧尾帽。保留棘突,行双侧椎板扩大开窗或单侧半椎板切除,切除减压侧黄韧带,切除减压节段上位椎体下关节突及下位椎体上关节突内侧1/3~1/2。神经根拉钩保护神经根及硬膜囊,行椎管、侧隐窝、神经根管彻底减压及椎间融合(椎间融合器+自体骨),椎间融合器置入后松开上下螺钉尾帽,待椎间隙自然回缩后再锁紧,再次探查减压节段确保减压充分。术中透视内置物位置满意后,彻底冲洗切口,放置引流管后分层缝合。
Topping-off组患者麻醉方式、体位及入路同PLIF组。显露术野后,下位融合节段双侧置入万向椎弓根螺钉,选择合适长度的连接棒预弯后安装至螺钉尾帽,椎间隙适当撑开后锁紧尾帽,暂不做下位椎间隙的融合,先行上位节段的Coflex手术。切除棘上韧带和棘间韧带,修整棘突上、下缘至平行并有合适宽度,切除上位节段两侧下1/3椎板和下1/2下关节突,再切除上关节突内侧1/3,注意须至少保留50%的关节面。切除黄韧带,显露硬膜囊,潜行减压棘突基底部至硬膜囊膨起良好,减压两侧神经根管,摘除突出的椎间盘髓核组织。神经根探子探查硬膜囊腹侧及两侧神经根管减压彻底后,选用试模置入,松紧满意后用相同型号Coflex固定于棘突之间,顶端离硬膜囊约2 mm,夹紧固定。之后行下位节段PLIF,过程同PLIF组。术中透视内置物位置满意后,彻底冲洗切口,放置引流管后分层缝合。
所有患者术后均常规应用抗生素24 h,术后2 d拔除引流管,术后3~5 d患者可下床功能锻炼,出院后佩戴腰围2~3个月。
1.3 观察指标记录手术时间、术中出血量。拍摄腰椎动力位X线片,测量并记录患者术前、术后1年及末次随访时手术节段Cobb角(手术节段上位椎体上缘与下位椎体下缘间的夹角),手术节段ROM为过伸位Cobb角与过屈位Cobb角的差值。术前、术后1年及末次随访时采用疼痛视觉模拟量表(VAS)评分[14]评估腰腿痛程度,Oswestry功能障碍指数(ODI)[15]和日本骨科学会(JOA)评分[16]评价腰椎功能。
1.4 统计学处理采用SPSS 15.0软件对数据进行统计分析,符合正态分布的计量资料以x±s表示,治疗前后比较采用配对样本t检验,组间比较采用独立样本均数t检验;以P<0.05为差异有统计学意义。
2 结果所有手术顺利完成,所有患者随访>48个月。Topping-off组手术时间及术中出血量少于PLIF组,差异均有统计学意义(P<0.05,表 2)。2组术后1年及末次随访时腰腿痛VAS评分、ODI及JOA评分较术前显著改善,差异均有统计学意义(P<0.05,表 2);各时间点组间差异无统计学意义(P>0.05,表 2)。Topping-off组术后1年及末次随访时腰椎手术节段ROM与术前相比,差异无统计学意义(P>0.05,表 2);PLIF组术后1年及末次随访时腰椎手术节段ROM较术前显著减小,且小于topping-off组,差异均有统计学意义(P<0.05,表 2)。
Topping-off组发生硬膜囊破裂1例,术后残留腰背痛1例,Coflex松动1例,无翻修病例。PLIF组发生伤口表浅感染1例,残留腰背痛1例,无翻修病例。2组均未发生严重术中或术后并发症,如神经损伤、马尾损伤等。Topping-off组典型病例影像学资料见图 1。
PLIF是治疗LDD的主要手术方式之一[1-4],但双节段融合会导致邻近节段ROM降低及应力增加,进而促进ASD的发生。既往研究[2]显示,PLIF术后ASD的发生率约为9%。Coflex有良好的压缩刚性,在维持手术节段稳定性的同时,可很好地保留减压节段ROM及保护腰椎矢状面平衡[17]。在双节段LDD患者中,一般存在主要责任节段和次要责任节段,初步研究[1, 4, 7-8]显示,对严重病变节段行腰椎融合,而对相邻的轻中度病变节段行Coflex动态固定的Topping-off手术可降低ASD的发生风险。同时,动态内固定减少了融合手术的创伤,相应地减少了手术时间和术中出血量[17-20]。因此,在严重退行性变节段上位存在轻中度退行性变时,理论上Topping-off手术比双节段PLIF更具优势[1, 6, 8-9]。
Topping-off手术可限制腰椎过度后伸以间接扩大椎管容积,缓解神经压迫,同时也可提供相当的稳定性[21]。本研究结果显示,Topping-off术式与双节段PLIF相比,手术时间、术中出血量显著减少;同时,Topping-off术式可更好地保留手术节段ROM;且2组疗效(腰腿痛VAS评分、ODI及JOA评分)相当。Chen等[22]对比Topping-off手术及双节段PLIF的3年随访临床疗效,结果显示,2组术后腿痛VAS评分及ODI均获得明显改善,且组间无显著差异,与本研究结论一致。Davis等[9]对Topping-off手术及PLIF进行了多中心随机对照试验,结果显示,topping-off组手术时间更短,术中出血量更低,同时,2组术后腰腿痛VAS评分均较术前显著改善,且术后2年topping-off组患者腰椎ROM与术前相同。综合上述研究与本研究的结论,可以认为Topping-off术式相对于双节段PLIF的优势之一是更少的组织损伤。
Coflex动态内固定系统的活动性使其可一定程度上保留手术节段的屈曲和后伸活动。因此,理论上Topping-off术式比双节段PLIF能更多地保留腰椎ROM。本研究结果也显示,topping-off组末次随访时手术节段ROM与术前相似,PLIF组末次随访时手术节段ROM较术前减小。既往研究[19]显示,Coflex系统有优异的压缩和延展性,对手术节段的稳定和活动性提供了帮助。何明长等[23]对比Coflex动态内固定系统及PLIF治疗单节段LDD的临床疗效,证实了Coflex动态内固定系统可更好地保留腰椎ROM,减少ASD的发生。Kumar等[24]对采用Topping-off术式治疗的患者随访24个月,结果显示,患者手术节段ROM均得到保留,与本研究结论一致。因此,在保留手术节段ROM方面,Topping-off术式显著优于双节段PLIF。
在并发症方面,topping-off组发生硬膜囊破裂1例,为切除黄韧带时导致;术后1年Coflex装置松动1例,随访过程中无相应临床症状,未进行翻修;腰背痛1例,术后3个月疼痛缓解。PLIF组发生伤口表浅感染1例;术后腰背痛1例,术后6个月缓解。虽然Topping-off手术较双节段PLIF创伤小,但Coflex系统的安装过程中可能损伤后方韧带复合体,引起相关节段稳定性降低及Coflex系统松动,因此,安装Coflex系统时需要注意保护棘突及相关韧带。同时,Coflex系统的活动性会导致采用Topping-off术式治疗的患者术后内置物发生松动、断裂的概率高于采用PLIF治疗的患者[25-26]。Davis等[9]报道,Topping-off手术约有10%的患者需要行翻修手术,翻修率高于PLIF,但差异无统计学意义。本研究中topping-off组无患者需要进行翻修手术,原因可能在于更加严格的患者选择。
综上所述,长期随访显示Topping-off术式与双节段PLIF具有相似的临床效果,且在手术时间、术中出血量及保留手术节段ROM等方面有明显优势。但本研究为单中心回顾性研究,未随机分组且样本量较小,故结论仍需要多中心、大样本量的随机对照研究以进一步验证。
[1] |
Musacchio MJ, Lauryssen C, Davis RJ, et al. Evaluation of decompression and interlaminar stabilization compared with decompression and fusion for the treatment of lumbar spinal stenosis: 5-year follow-up of a prospective, randomized, controlled trial[J]. Int J Spine Surg, 2016, 10: 6. DOI:10.14444/3006 |
[2] |
Alentado VJ, Lubelski D, Healy AT, et al. Predisposing characteristics of adjacent segment disease after lumbar fusion[J]. Spine(Phila Pa 1976), 2016, 41(14): 1167-1172. DOI:10.1097/BRS.0000000000001493 |
[3] |
Kim JY, Ryu DS, Paik HK, et al. Paraspinal muscle, facet joint, and disc problems: risk factors for adjacent segment degeneration after lumbar fusion[J]. Spine J, 2016, 16(7): 867-875. DOI:10.1016/j.spinee.2016.03.010 |
[4] |
梁昌详, 昌耘冰, 沈梓维, 等. 椎管减压棘突间Coflex置入术治疗L4/5退变性腰椎管狭窄症的5年随访结果[J]. 中国脊柱脊髓杂志, 2014, 24(12): 1072-1078. DOI:10.3969/j.issn.1004-406X.2014.12.04 |
[5] |
管俊杰, 石志才. 后路腰椎椎间融合术对邻近节段退变的影响[J]. 脊柱外科杂志, 2011, 9(2): 83-87. |
[6] |
Röder C, Baumgärtner B, Berlemann U, et al. Superior outcomes of decompression with an interlaminar dynamic device versus decompression alone in patients with lumbar spinal stenosis and back pain: a cross registry study[J]. Eur Spine J, 2015, 24(10): 2228-2235. DOI:10.1007/s00586-015-4124-6 |
[7] |
Lee SH, Seol A, Cho TY, et al. A systematic review of interspinous dynamic stabilization[J]. Clin Orthop Surg, 2015, 7(3): 323-329. DOI:10.4055/cios.2015.7.3.323 |
[8] |
Bae HW, Lauryssen C, Maislin G, et al. Therapeutic sustainability and durability of coflex interlaminar stabilization after decompression for lumbar spinal stenosis: a four year assessment[J]. Int J Spine Surg, 2015, 9: 15. DOI:10.14444/2015 |
[9] |
Davis RJ, Errico TJ, Bae H, et al. Decompression and Coflex interlaminar stabilization compared with decompression and instrumented spinal fusion for spinal stenosis and low-grade degenerative spondylolisthesis: two-year results from the prospective, randomized, multicenter, Food and Drug Administration Investigational Device Exemption trial[J]. Spine(Phila Pa 1976), 2013, 38(18): 1529-1539. DOI:10.1097/BRS.0b013e31829a6d0a |
[10] |
Davis R, Auerbach JD, Bae H, et al. Can low-grade spondylolisthesis be effectively treated by either coflex interlaminar stabilization or laminectomy and posterior spinal fusion? Two-year clinical and radiographic results from the randomized, prospective, multicenter US investigational device exemption trial: clinical article[J]. J Neurosurg Spine, 2013, 19(2): 174-184. DOI:10.3171/2013.4.SPINE12636 |
[11] |
Wang W, Kong C, Pan F, et al. Biomechanical comparative analysis of effects of dynamic and rigid fusion on lumbar motion with different sagittal parameters: an in vitro study[J]. Front Bioeng Biotechnol, 2022, 10: 943092. DOI:10.3389/fbioe.2022.943092 |
[12] |
Fan Y, Zhou S, Xie T, et al. Topping-off surgery vs posterior lumbar interbody fusion for degenerative lumbar disease: a finite element analysis[J]. J Orthop Surg Res, 2019, 14(1): 476. DOI:10.1186/s13018-019-1503-4 |
[13] |
郭马超, 孔超, 孙祥耀, 等. Coflex生物力学及临床应用的研究进展[J]. 脊柱外科杂志, 2019, 17(4): 282-287. DOI:10.3969/j.issn.1672-2957.2019.04.013 |
[14] |
Huskisson EC. Measurement of pain[J]. Lancet, 1974, 2(7889): 1127-1131. |
[15] |
Fairbank JC, Couper J, Davies JB, et al. The Oswestry low back pain disability questionnaire[J]. Physiotherapy, 1980, 66(8): 271-273. |
[16] |
Fukui M, Chiba K, Kawakami M, et al. Japanese Orthopaedic Association back pain evaluation questionnaire. Part 2. Verification of its reliability: the subcommittee on Low back pain and cervical myelopathy evaluation of the clinical outcome committee of the Japanese Orthopaedic Association[J]. J Orthop Sci, 2007, 12(6): 526-532. DOI:10.1007/s00776-007-1168-4 |
[17] |
孔超, 鲁世保, 海涌, 等. 腰椎融合联合Coflex动态固定手术对腰椎矢状面平衡的影响及其与临床疗效相关性分析[J]. 脊柱外科杂志, 2014, 12(1): 1-4. DOI:10.3969/j.issn.1672-2957.2014.01.001 |
[18] |
Käfer W, Cakir B, Midderhoff S, et al. Circumferential dynamic stabilization of the lumbar spine: a biomechanical analysis[J]. Eur Spine J, 2014, 23(11): 2330-2339. DOI:10.1007/s00586-014-3286-y |
[19] |
Schilling C, Pfeiffer M, Grupp TM, et al. The effect of design parameters of interspinous implants on kinematics and load bearing: an in vitro study[J]. Eur Spine J, 2014, 23(4): 762-771. DOI:10.1007/s00586-014-3237-7 |
[20] |
Kong C, Lu S, Hai Y, et al. Biomechanical effect of interspinous dynamic stabilization adjacent to single-level fusion on range of motion of the transition segment and the adjacent segment[J]. Clin Biomech(Bristol, Avon), 2015, 30(4): 355-359. DOI:10.1016/j.clinbiomech.2015.02.012 |
[21] |
Zhu Z, Liu C, Wang K, et al. Topping-off technique prevents aggravation of degeneration of adjacent segment fusion revealed by retrospective and finite element biomechanical analysis[J]. J Orthop Surg Res, 2015, 10: 10. DOI:10.1186/s13018-014-0142-z |
[22] |
Chen XL, Guan L, Liu YZ, et al. Interspinous dynamic stabilization adjacent to fusion versus double-segment fusion for treatment of lumbar degenerative disease with a minimum follow-up of three years[J]. Int Orthop, 2016, 40(6): 1275-1283. DOI:10.1007/s00264-016-3199-y |
[23] |
何明长, 陈志达, 肖莉莉, 等. Coflex腰椎棘突间动态稳定系统与腰椎后路椎间融合内固定治疗单节段腰椎退行性疾病的疗效比较[J]. 中国骨与关节损伤杂志, 2022, 37(7): 691-695. |
[24] |
Kumar MN, Baklanov A, Chopin D. Correlation between sagittal plane changes and adjacent segment degeneration following lumbar spine fusion[J]. Eur Spine J, 2001, 10(4): 314-319. DOI:10.1007/s005860000239 |
[25] |
Zang L, Du P, Hai Y, et al. Device related complications of the Coflex interspinous process implant for the lumbar spine[J]. Chin Med J(Engl), 2013, 126(13): 2517-2522. |
[26] |
Xu C, Ni WF, Tian NF, et al. Complications in degenerative lumbar disease treated with a dynamic interspinous spacer(Coflex)[J]. Int Orthop, 2013, 37(11): 2199-2204. DOI:10.1007/s00264-013-2006-2 |