脊柱外科杂志  2024, Vol.22 Issue(3): 145-151   PDF    
改良侧方入路腰椎椎间融合术联合侧方钢板螺钉或双侧椎弓根螺钉内固定治疗骨量减少的单节段腰椎退行性疾病
薛旺东1, 海恒光2, 周建升2, 周海军1, 张升1, 黄伟1, 陈建2     
1. 宁夏医科大学临床医学院,银川 750002;
2. 银川国龙骨科医院脊柱外科,银川 750000
摘要: 目的 探讨改良侧方入路腰椎椎间融合术(mLLIF)联合侧方钢板螺钉或双侧椎弓根螺钉内固定治疗骨量减少的单节段腰椎退行性疾病(LDD)的临床疗效。方法 2020年2月—2023年2月,银川国龙骨科医院收治骨量减少的单节段LDD患者39例,其中22例采用mLLIF联合侧方钢板螺钉治疗(LP组),17例采用mLLIF联合双侧椎弓根螺钉治疗(BPS组)。记录2组手术时间、术中出血量、术中透视次数、切口总长度和术后住院时间等临床指标;术前、术后3 d及术后6个月采用疼痛视觉模拟量表(VAS)评分和Oswestry功能障碍指数(ODI)评价患者疼痛程度和功能状态。在术前、术后3 d及术后6个月X线片上测量手术节段椎间盘高度(DH)、椎间孔高度(FH)、节段前凸角(SL)及腰椎前凸角(LL)。结果 所有手术顺利完成。LP组手术时间、术中出血量、术中透视次数、切口总长度和术后住院时间优于BPS组,差异均有统计学意义(P < 0.05)。2组术后腰痛、下肢痛VAS评分及ODI较术前改善,LP组术后3 d腰痛VAS评分优于BPS组,BPS组术后6个月ODI优于LP组,差异均有统计学意义(P < 0.05)。2组术后DH、FH、LL、SL较术前改善,且BPS组DH、FH丢失率小于LP组,差异均有统计学意义(P < 0.05)。术后6个月LP组椎间融合率为90.91%(20/22)、融合器沉降率为36.36%,BPS组椎间融合率为94.18%(16/17)、融合器沉降率为41.18%,组间差异均无统计学意义(P > 0.05)。结论 mLLIF联合LP或BPS治疗骨量减少的单节段LDD均可取得满意的早期临床疗效,mLLIF联合LP具有微创、手术时间短、术中出血量少及术后恢复快等优点,但mLLIF联合BPS在促进椎间融合、维持间接减压、预防椎间融合器沉降方面更具优势。
关键词: 腰椎    椎间盘退行性变    骨质疏松    脊柱融合术    内固定器    
Modified lateral lumbar interbody fusion combined with lateral plate-screw or bilateral pedicle screw internal fixation for treatment of single-segment lumbar degenerative diseases with osteopenia
Xue Wangdong1, Hai Hengguang2, Zhou Jiansheng2, Zhou Haijun1, Zhang Sheng1, Huang Wei1, Chen Jian2     
1. Clinical Medical College, Ningxia Medical University, Yinchuan 750002, Ningxia Hui Autonomous Region, China;
2. Department of Spinal Surgery, Yinchuan Guolong Orthopedic Hospital, Yinchuan 750000, Ningxia Hui Autonomous Region, China
Abstract: Objective To explore the clinical efficacy of modified lateral lumbar interbody fusion(mLLIF) combined with lateral plate-screw or bilateral pedicle screw internal fixation for treatment of single-segment lumbar degenerative diseases(LDD) with osteopenia. Methods From February 2020 to February 2023, 39 patients with single-segment LDD and osteopenia treated in Yinchuan Guolong Orthopedic Hospital were admitted. Among them, 22 cases were treated with mLLIF combined with lateral plate-screw(LP group), and 17 were treated with mLLIF combined with bilateral pedicle screw(BPS group). Clinical indicators such as operation time, intraoperative blood loss, intraoperative fluoroscopy frequency, total incision length and postoperative hospital stay of 2 groups were recorded. Pain intensity and functional status of patients were evaluated using the visual analog scale(VAS) score and Oswestry disability index(ODI) at pre-operation, postoperative 3 d and postoperative 6 months. The disc height(DH), foramen height(FH) and segmental lordosis(SL) of the operative semgent, and lumbar lordosis(LL) was measured on roentgenographs at pre-operation, postoperative 3 d and postoperative 6 months. Results All the surgeries were completed successfully. The LP group had better operation time, intraoperative blood loss, intraoperative fluoroscopy frequency, total incision length and postoperative hospital stay than the BPS group, with statistically significant differences(P < 0.05). The VAS scores of low back pain and lower limb pain and ODI in both groups at post-operation improved compared to pre-operation, and the VAS score of low back pain in the LP group was better than that in the BPS group at postoperative 3 d, and the ODI in the BPS group was better than that in the LP group at postoperative 6 months, all with a statistical significance(P < 0.05). The DH, FH, LL and SL of the 2 groups at post-operation improved compared to pre-operation, and the loss rate of DH and FH in the BPS group was lower than that in the LP group, all with a statistical significance(P < 0.05). At postoperative 6 months, the fusion rate in the LP group was 90.91%, and the cage settlement rate was 36.36%;in the BPS group, the fusion rate was 94.18%, and the cage settlement rate was 41.18%, without statistical significance(P > 0.05). Conclusions mLLIF combined with LP or BPS can achieve satisfactory early clinical efficacy in the treatment of single-segment LDD with osteopenia. mLLIF combined with LP has advantages such as minimally invasive, short operation time, low intraoperative blood loss and fast postoperative recovery. However, mLLIF combined with BPS has more advantages in promoting fusion, maintaining indirect decompression, and preventing cage subsidence.
Key words: Lumbar vertebrae    Intervertebral disc degeneration    Osteoporosis    Spinal fusion    Internal fixators    

腰椎退行性疾病(LDD)影响患者生活质量,随着人口老龄化,LDD患者的数量及需要手术治疗者逐年增加[1-3]。脊柱融合术是缓解疼痛、稳定受累节段的有效术式。近年来,以侧方入路腰椎椎间融合术(LLIF)为代表的微创术式,减少了与传统手术入路暴露相关的并发症的发生,是侵入性较低的替代术式[4-5]。传统极外侧入路腰椎椎间融合术(XLIF)手术入路并发症发生率较高[6-8],为减少XLIF手术损伤神经的风险,陈其昕等[9]在自制通道器械的基础上提出改良LLIF(mLLIF),显著降低了手术入路相关并发症的发生率。随着LDD合并骨质疏松症患者的比例逐渐增加,选择合适的内固定器械成为临床关注的问题。有研究[10-12]表明,对于严重骨质疏松症患者,单纯采用LLIF治疗不足以为腰椎提供足够的结构稳定性,且对终板施加了更大的机械应力,导致终板骨折及融合器沉降,影响间接减压效果。与单纯LLIF相比,辅助侧方或后方内固定器可提供更高的生物力学稳定性,降低融合器沉降的发生率[13]。其中,联合双侧椎弓根螺钉(BPS)的方式可提供最佳的生物力学稳定性,被广泛采用[14]。但额外的后路手术增加了椎旁肌损伤、手术时间和手术费用。因此,本研究采用mLLIF联合侧方钢板螺钉治疗骨量减少的单节段LDD患者,并与mLLIF联合BPS的疗效进行比较,旨在验证mLLIF联合侧方钢板螺钉治疗骨量减少的单节段LDD是否可在缩短手术时间、减少手术创伤的基础上获得与mLLIF联合BPS相当的疗效。

1 资料与方法 1.1 一般资料

纳入标准:①反复腰背痛和下肢放射痛,经规范的非手术治疗3个月无效或加重。②L2~5单节段LDD(MeyerdingⅡ度以内的退行性腰椎滑脱、腰椎不稳、椎管狭窄伴轻/中度不稳,腰椎椎间盘突出症),症状、体征与影像学检查相一致。③骨量减少,骨密度T值< -1.0。排除标准:①严重骨质疏松,骨密度T值< -2.5。②合并发育性腰椎椎管狭窄症或关节突关节骨性增生、融合导致的侧隐窝狭窄。③游离髓核组织进入椎管。根据上述标准,纳入2020年2月—2023年2月银川国龙骨科医院收治的骨量减少的单节段LDD患者39例,其中22例采用mLLIF联合侧方钢板螺钉治疗(LP组),17例采用mLLIF联合双侧椎弓根螺钉治疗(BPS组)。2组患者术前基线资料差异无统计学意义(P > 0.05,表 1),具有可比性。

表 1 2组患者基线资料 Tab. 1 Baseline data of patients in 2 groups
1.2 手术方法

2组手术由同一组医师配合完成。患者全身麻醉,右侧卧位,腰部垫高、手术床屈曲,术中全程进行神经电生理监测。以术前体表标记的目标椎间隙为中心做横切口或斜切口。全程直视下切开皮肤、皮下组织,沿肌纤维方向依次钝性分离肌肉组织后进入腹膜后间隙。全程直视下避开腰大肌表面生殖股神经,根据术前MRI及术中透视提供的安全工作区域沿肌纤维纵向劈开腰大肌,工作通道中线距离后方神经根1 cm以上。找到目标椎间隙并再次透视确认,显露目标椎间盘侧方,建立工作通道后进行椎间盘处理并制备椎体终板,椎间隙处理完成后切开对侧纤维环,试模逐级扩张,选择大小合适的融合器(上海三友医疗器械股份有限公司)填充自体骨(自体髂骨)后置入椎间隙。LP组在完成融合术后在椎骨侧部放置侧板固定系统,头尾2个螺钉成角0° ~ 15°将钢板固定,透视无误后逐层关闭切口。BPS组完成融合术后逐层关闭侧方切口,患者改为俯卧位,在C形臂X线机透视辅助下经Wiltse入路在融合节段置入4枚椎弓根螺钉,安装螺杆系统后逐层关闭切口。

1.3 评估指标

记录2组手术时间、术中出血量、术中透视次数、切口总长度、术后住院时间及术中、术后并发症。术前、术后3 d及术后6个月采用疼痛视觉模拟量表(VAS)评分[15]和Oswestry功能障碍指数(ODI)[16]评价患者疼痛程度和功能状态。在术前、术后3 d及术后6个月X线片上测量手术节段椎间盘高度(DH,上位椎体下终板与下位椎体上终板间的距离,取前缘高度与后缘高度的平均值)、椎间孔高度(FH,手术节段椎间孔最高点与最低点间的距离)、节段前凸角(SL,手术节段上位椎体上终板和下位椎体下终板延长线间的夹角)及腰椎前凸角(LL,L1上终板和S1上终板延长线间的夹角),并计算DH、FH丢失率。丢失率(%)=(术后3 d测量值-术后6个月测量值)/术后3 d测量值×100%。

1.4 统计学处理

使用SPSS 22.0软件对数据进行统计分析。符合正态分布的计量资料以x±s表示,组间比较采用独立样本t检验,组内不同时间点比较采用配对样本t检验;计数资料以频数或率(%)表示,组间比较采用χ2检验;以P < 0.05为差异有统计学意义。

2 结果

所有手术顺利完成,患者随访 > 6个月。LP组手术时间、术中出血量、术中透视次数、切口总长度和术后住院时间优于BPS组,差异均有统计学意义(P < 0.05,表 2)。2组术后腰痛、下肢痛VAS评分及ODI较术前改善,LP组术后3 d腰痛VAS评分优于BPS组,BPS组术后6个月ODI优于LP组,差异均有统计学意义(P < 0.05,表 2)。2组术后DH、FH、LL、SL较术前改善,且BPS组DH、FH丢失率小于LP组,差异均有统计学意义(P < 0.05,表 2)。术后6个月LP组椎间融合率为90.91%(20/22)、融合器沉降率为36.36%(Ⅰ级5例,Ⅱ级3例),BPS组椎间融合率为94.18%(16/17)、融合器沉降率为41.18%(Ⅰ级6例,Ⅱ级1例),差异均无统计学意义(P > 0.05)。

表 2 2组临床指标及影像学指标 Tab. 2 Clinical and imaging indicators of 2 groups

2组均未发生大血管损伤、逆行性射精、输尿管损伤、腹腔脏器损伤等并发症。随访期间无椎间隙感染、脑脊液漏、椎体骨折或器械故障发生。所有患者手术切口均Ⅰ期愈合,一过性入路相关并发症发生率为30.77%(12/39)。LP组7例(31.82%)发生术后并发症:屈髋肌无力4例,其中2例合并大腿前方疼痛;大腿前方麻木伴疼痛2例;融合器沉降后症状加重行翻修手术1例。BPS组5例(29.41%)发生术后并发症:屈髋肌无力3例,其中1例合并大腿前方疼痛;腹股沟区疼痛1例;大腿前方麻木1例。末次随访时LP组1例患者大腿前方麻木感仍存在。2组典型病例影像学资料见图 12

图 1 BPS组典型病例影像学资料 Fig. 1 Imaging data of a typical case in BPS group 男,71岁,L4,5腰椎滑脱  a、b:术前正侧位X线片示L4Ⅰ度退行性滑脱  c、d:术前CT示L4/L5椎间盘突出继发椎管狭窄  e、f:术前MRI示L4滑脱,继发L4,5节段椎管狭窄  g、h:术后6个月正侧位X线片示滑脱复位良好,内固定牢固可靠,椎间融合 Male, 71 years old, L4, 5 lumbar spondylolisthesis a, b: Preoperative anteroposterior and lateral roentgenographs show L4Ⅰ degree degenerative spondylolisthesis c, d: Preoperative CTs show L4/L5 intervertebral disc herniation, secondary spinal stenosis e, f: Preoperative MRIs show L4 spondylolisthesis and secondary L4, 5 segment spinal stenosis g, h: Anteroposterior and lateral roentgenographs at postoperative 6 months show good reduction of spondylolisthesis, firm and reliable internal fixation, and intervertebral fusion

图 2 LP组典型病例影像学资料 Fig. 2 Imaging data of a typical case in LP group 女,59岁,L4,5腰椎滑脱(腰椎不稳)  a、b:术前正侧位X线片示L4退行性滑脱,腰椎不稳  c、d:术前CT示L4/L5椎间盘突出继发椎管狭窄  e、f:术前MRI示L4/L5椎间盘膨出,硬膜囊受压,继发L4,5节段椎管狭窄  g、h:术后6个月正侧位X线片示滑脱复位良好,内固定牢固可靠,椎间融合 Female, 59 years old, L4, 5 lumbar spondylolisthesis(lumbar instability) a, b: Preoperative anteroposterior and lateral roentgenographs show L4 degenerative spondylolisthesis and instability c, d: Preoperative CTs show L4/L5 intervertebral disc herniation, secondary spinal stenosis e, f: Preoperative MRIs show L4/L5 intervertebral disc herniation, dural sac compression, and secondary L4, 5 segment spinal stenosis g, h: Anteroposterior and lateral roentgenographs at postoperative 6 months show good reduction of spondylolisthesis, firm and reliable internal fixation, and intervertebral fusion
3 讨论

腰椎椎间融合术(LIF),如后路腰椎椎间融合术(PLIF)、经椎间孔入路腰椎椎间融合术(TLIF)等直接减压融合技术已成为治疗LDD的成熟术式,但这些技术会破坏脊柱后方稳定结构。mLLIF是在XLIF技术的基础上发展而来的一种相对安全的术式,虽然该入路相关神经系统并发症的发生不可避免,但mLLIF通过全程直视下操作、“安全”腰大肌入路及微型弹性拉钩的应用显著降低了入路相关并发症的发生率[9]。其中,短暂性腰肌无力和神经症状是XLIF常见神经系统并发症,有研究[7]报道,感觉神经损伤发生率为0% ~ 75%,大腿前方疼痛发生率为12.5% ~ 25.0%,神经丛损伤发生率为13.28%。本研究结果显示,腰大肌无力发生率为7.69%、大腿前方疼痛发生率为15.38%、大腿前方感觉麻木发生率为10.26%,虽然较以往研究有所下降,但由于该手术入路需要劈开腰大肌显露腰椎侧方,在操作过程中不可避免地对腰丛产生干扰,部分患者存在术后一过性症状,在术后1 ~ 3个月逐渐减轻或消失,本研究仅发现1例患者术后6个月时大腿前方残留麻木感。

既往研究[17]报道,mLLIF联合2种内固定均可改善患者疼痛症状、功能状态及影像学参数,达到缓解临床症状的目的,且在功能改善方面,BPS更具优势。有研究[18]发现,间接减压术后影像学参数有不同程度丢失,本研究也获得相似的结果。此外,本研究结果还显示,BPS组术后DH、FH丢失率明显低于LP组。以上结果提示,尽管LP可以提供腰椎稳定的侧位弯曲能力,但BPS可提供腰椎三维稳定性,在维持间接减压影像学参数方面更具优势。

维持腰椎节段稳定性对于腰椎融合具有显著意义。Tempel等[19]的研究发现,骨密度T值< -1.0的患者采用单纯LLIF治疗,术后融合器沉降的风险更高。人体生物力学研究[20]表明,相较于单纯LLIF,联合使用BPS和LP可提供足够的生物力学稳定性,减少融合器沉降,提高椎间融合率。其中,BPS因生物力学稳定性高、固定牢固而被广泛应用;LP由于螺钉对软骨下骨小梁的破坏性作用,是否有利于椎间融合及防止融合器沉降,目前尚存在一定争议。近年,前路腰椎椎间融合术(ALIF)或斜外侧入路腰椎椎间融合术(OLIF)联合LP使用,实现一期椎间融合和内固定,获得满意疗效[21-23]。本研究结果显示,末次随访时2组融合率相似,BPS组稍高于LP组,但差异无统计学意义,与以往研究[24]结果相似。尽管LP可增加腰椎侧向弯曲的稳定性,但与BPS增加腰椎轴向弯曲稳定性相比,LP有限的单侧刚度及抗旋转能力对脊柱稳定性的维持及椎间融合的促进作用可能弱于BPS。

有研究[25]表明,LLIF术后融合器轻度塌陷可能是预期的结果,融合率和最终临床结果均不会受到影像学上融合器沉降的影响。然而,当椎间融合器下沉到相邻椎体,将导致DH、FH的丢失,使间接减压效果丢失,如椎体节段稳定性、矢状面平衡、神经减压效果,甚至加重椎管狭窄、邻近节段退行性变的可能。本研究结果显示,2组术后融合器均有不同程度沉降,沉降分级差异无统计学意义,临床疗效不受融合器沉降的影响,末次随访时融合器沉降病例均获得椎间融合;仅1例LP组患者融合器沉降后症状加重行翻修手术,考虑可能原因是内弧形万向锁钉钢板与螺钉一体化,固定强度在一定程度上依赖椎体骨密度,骨量下降时松质骨接触的螺钉可能无法承受腰椎多方向的应力活动。mLLIF联合不同内固定方式的有限元研究[26]也表明,联合LP时椎体侧方应力载荷更大,可能导致侧方内固定的失败。

有研究[27]表明,骨密度低、女性、高BMI等是融合器沉降的危险因素,虽然不同内固定方式均可达到提高椎体稳定性的作用,BPS在维持间接减压效果方面更具优势,建议对合并骨质疏松症的女性患者采用mLLIF联合BPS治疗。此外,终板因素也是影响融合器沉降的危险因素之一[27],尤其终板处理是LLIF至关重要的步骤之一。有研究[28]表明,在终板损伤的情况下,椎体载荷能力及生物力学稳定性均有不同程度下降,影响融合器及椎体节段稳定性,导致延迟愈合或假关节形成。LLIF术中的医源性终板损伤主要发生于椎间隙处理和融合器置入的过程,特别是处理终板薄弱部分(上终板和终板前部)时粗暴使用锋利的铰刀,模具测试插入和融合器置入不仔细或不规范。如骨性终板损伤,融合器置入后在轴向压力作用下会有不同程度沉降,因此,建议术中细致规范操作、关键步骤及时透视下引导、选择合适试模或融合器等预防术中终板损伤。

综上所述,mLLIF联合LP或BPS治疗骨量减少的单节段LDD均可取得满意的早期临床疗效,mLLIF联合LP具有微创、手术时间短、术中出血量少及术后恢复快等优点,但mLLIF联合BPS在促进椎间融合、维持间接减压、预防椎间融合器沉降方面更具优势。

参考文献
[1]
Fehlings MG, Tetreault L, Nater A, et al. The aging of the global population: the changing epidemiology of disease and spinal disorders[J]. Neurosurgery, 2015, 77(Suppl 4): S1-S5.
[2]
Ravindra VM, Senglaub SS, Rattani A, et al. Degenerative lumbar spine disease: estimating global incidence and worldwide volume[J]. Global Spine J, 2018, 8(8): 784-794. DOI:10.1177/2192568218770769
[3]
Lenz M, Mohamud K, Bredow J, et al. Comparison of different approaches in lumbosacral spinal fusion surgery: a systematic review and meta-analysis[J]. Asian Spine J, 2022, 16(1): 141-149. DOI:10.31616/asj.2020.0405
[4]
Ozgur BM, Aryan HE, Pimenta L, et al. Extreme Lateral Interbody Fusion(XLIF): a novel surgical technique for anterior lumbar interbody fusion[J]. Spine J, 2006, 6(4): 435-443. DOI:10.1016/j.spinee.2005.08.012
[5]
张文彬, 吕良友, 王志鹏, 等. 斜外侧椎间融合术与微创经椎间孔入路腰椎椎间融合术治疗单节段轻中度腰椎滑脱的临床疗效[J]. 脊柱外科杂志, 2023, 21(1): 26-31. DOI:10.3969/j.issn.1672-2957.2023.01.005
[6]
Spiessberger A, Arvind V, Dietz N, et al. A comparison of complications and clinical and radiologic outcome between the mini-open prepsoas and mini-open transpsoas approaches for lumbar interbody fusion: a meta-analysis[J]. Clin Spine Surg, 2020, 33(7): 271-279. DOI:10.1097/BSD.0000000000001015
[7]
Epstein NE. High neurological complication rates for extreme lateral lumbar interbody fusion and related techniques: a review of safety concerns[J]. Surg Neurol Int, 2016, 7(Suppl 25): S652-S655.
[8]
陈漩, 李野, 赵海洋, 等. 微创经椎间孔、极外侧、斜外侧入路腰椎椎间融合术的适应证及并发症研究进展[J]. 脊柱外科杂志, 2020, 18(6): 419-424. DOI:10.3969/j.issn.1672-2957.2020.06.012
[9]
李方财, 陈其昕, 陈维善. 改良侧方入路腰椎椎体间融合术及其临床应用[J]. 中华骨科杂志, 2018, 38(4): 212-219. DOI:10.3760/cma.j.issn.0253-2352.2018.04.003
[10]
Bocahut N, Audureau E, Poignard A, et al. Incidence and impact of implant subsidence after stand-alone lateral lumbar interbody fusion[J]. Orthop Traumatol Surg Res, 2018, 104(3): 405-410. DOI:10.1016/j.otsr.2017.11.018
[11]
He W, He D, Sun Y, et al. Standalone oblique lateral interbody fusion vs. combined with percutaneous pedicle screw in spondylolisthesis[J]. BMC Musculoskelet Disord, 2020, 21(1): 184. DOI:10.1186/s12891-020-03192-7
[12]
邱龙恒, 王兵, 陈凌强, 等. 斜外侧腰椎间融合术辅助不同内固定方式治疗腰椎退行性疾病的研究进展[J]. 实用骨科杂志, 2022, 28(6): 518-522.
[13]
Liu X, Ma J, Park P, et al. Biomechanical comparison of multilevel lateral interbody fusion with and without supplementary instrumentation: a three-dimensional finite element study[J]. BMC Musculoskelet Disord, 2017, 18(1): 63. DOI:10.1186/s12891-017-1387-6
[14]
Ohtori S, Orita S, Yamauchi K, et al. Mini-open anterior retroperitoneal lumbar interbody fusion: oblique lateral interbody fusion for lumbar spinal degeneration disease[J]. Yonsei Med J, 2015, 56(4): 1051-1059. DOI:10.3349/ymj.2015.56.4.1051
[15]
Huskisson EC. Measurement of pain[J]. Lancet, 1974, 2(7889): 1127-1131.
[16]
Fairbank JC, Couper J, Davies JB, et al. The Oswestry low back pain disability questionnaire[J]. Physiotherapy, 1980, 66(8): 271-273.
[17]
Zhang D, Zeng T, Chen K, et al. Applications of the crenel lateral interbody fusion procedure in treatment for adjacent segments degeneration of the lumbar spine[J]. Orthop Surg, 2022, 14(9): 2150-2158. DOI:10.1111/os.13420
[18]
张迪, 张文明, 周献伟, 等. CLIF与TLIF治疗退变性腰椎滑脱合并腰椎管狭窄症的疗效比较[J]. 中国修复重建外科杂志, 2021, 35(2): 210-216.
[19]
Tempel ZJ, Gandhoke GS, Okonkwo DO, et al. Impaired bone mineral density as a predictor of graft subsidence following minimally invasive transpsoas lateral lumbar interbody fusion[J]. Eur Spine J, 2015, 24(Suppl 3): 414-419.
[20]
Lai O, Chen Y, Chen Q, et al. Cadaveric biomechanical analysis of multilevel lateral lumbar interbody fusion with and without supplemental instrumentation[J]. BMC Musculoskelet Disord, 2021, 22(1): 280. DOI:10.1186/s12891-021-04151-6
[21]
Liu J, Feng H. Oblique lateral interbody fusion(OLIF) with supplemental anterolateral screw and rod instrumentation: a preliminary clinical study[J]. World Neurosurg, 2020, 134: e944-e950. DOI:10.1016/j.wneu.2019.11.046
[22]
Wen J, Shi C, Yu L, et al. Unilateral versus bilateral percutaneous pedicle screw fixation in oblique lumbar interbody fusion[J]. World Neurosurg, 2020, 134: e920-e927. DOI:10.1016/j.wneu.2019.11.035
[23]
Xie T, Wang C, Yang Z, et al. Minimally invasive oblique lateral lumbar interbody fusion combined with anterolateral screw fixation for lumbar degenerative disc disease[J]. World Neurosurg, 2020, 135: e671-e678. DOI:10.1016/j.wneu.2019.12.105
[24]
郎昭, 葛腾辉, 吴静晔, 等. 斜外侧腰椎椎间融合联合侧方钢板与联合后路椎弓根螺钉内固定治疗腰椎退行性疾病的半年随访[J]. 中国组织工程研究, 2022, 26(33): 5364-5369.
[25]
Marchi L, Abdala N, Oliveira L, et al. Radiographic and clinical evaluation of cage subsidence after stand-alone lateral interbody fusion[J]. J Neurosurg Spine, 2013, 19(1): 110-118. DOI:10.3171/2013.4.SPINE12319
[26]
Chen YL, Lai OJ, Wang Y, et al. The biomechanical study of a modified lumbar interbody fusion-crenel lateral interbody fusion(CLIF): a three-dimensional finite-element analysis[J]. Comput Methods Biomech Biomed Engin, 2020, 23(9): 548-555. DOI:10.1080/10255842.2020.1745784
[27]
Kim YH, Ha KY, Kim KT, et al. Risk factors for intraoperative endplate injury during minimally-invasive lateral lumbar interbody fusion[J]. Sci Rep, 2021, 11(1): 20149. DOI:10.1038/s41598-021-99751-6
[28]
Wu H, Shan Z, Zhao F, et al. Poor bone quality, multilevel surgery, and narrow and tall cages are associated with intraoperative endplate injuries and late-onset cage subsidence in lateral lumbar interbody fusion: a systematic review[J]. Clin Orthop Relat Res, 2022, 480(1): 163-188. DOI:10.1097/CORR.0000000000001915