多节段脊髓型颈椎病伴椎管狭窄(MCSMSS)是脊柱外科临床常见疾病,常表现为四肢麻木无力、感觉运动功能障碍等进行性神经症状,严重影响患者的正常生活[1-2]。由于其神经功能损伤较重,常须接受外科手术治疗。颈椎前路椎体次全切除融合术(ACCF)是治疗MCSMSS的常用手术方法之一[3]。然而,ACCF对手术操作技术要求较高,术中操作不慎会导致严重的并发症,如脊髓损伤、脑脊液漏等,而且,由于颈椎长节段重建困难,ACCF术后常发生内置物沉降、假关节形成等相关并发症,所有这些缺点都限制了ACCF的广泛应用[4]。颈椎前路椎体可控前移融合术(ACAF)[5-6]是一种较为新颖的手术技术,最初由史建刚教授[7-8]提出,用于治疗严重的后纵韧带骨化症,并取得了良好的临床效果。本研究组将ACAF用于MCSMSS的治疗,并与ACCF疗效进行比较,现报告如下。
1 资料与方法 1.1 一般资料纳入标准:①明确诊断为脊髓型颈椎病,影像学资料显示明确的颈椎脊髓压迫并伴有脊髓损伤神经症状、体征;②责任节段≥3个;③合并椎管狭窄(发育性或退行性)。所有病例的症状、体征与影像学检查结果均符合MCSMSS诊断,且不包括因后纵韧带骨化导致的颈椎椎管狭窄。根据上述标准,纳入2021年6月—2022年6月收治的MCSMSS患者61例,其中28例采用ACAF治疗(ACAF组),33例采用ACCF治疗(ACCF组)。ACAF组男15例、女13例,年龄为49 ~ 76(60.93±10.62)岁;ACCF组男18例、女15例,年龄为47 ~ 79(59.25±9.57)岁。本研究通过医院伦理委员会审核备案,所有患者术前均签署知情同意书。所有手术均由同一手术组完成。
1.2 手术方法ACAF组患者全身麻醉后取仰卧位,颈部后仰,术区常规消毒铺巾。做颈前纵或横切口,逐层显露至椎前间隙后透视确定手术节段。用三关节咬骨钳咬除目标间隙及椎体前缘骨赘,彻底清除椎间盘,显露并切开后纵韧带,显露硬膜囊。仅切除头尾两端椎间隙的后纵韧带,中间各节段椎间隙仅处理椎间盘纤维环、髓核及终板,后纵韧带无须切除。使用三关节咬骨钳去除椎体前部部分骨质。试模测量各椎间隙大小,于各间隙安装填塞自体骨的椎间融合器。将预弯的钛板放置于椎体前缘,安装椎体钉。椎体两侧开槽,槽宽1.5 ~ 2.0 mm。使用多把椎体钉螺丝刀同时拧紧须提拉节段的椎体钉,观察确认椎体逐渐前移至紧贴钛板。仔细止血并冲洗切口,放置引流管,逐层关闭手术切口。
ACCF组患者全身麻醉后取仰卧位,颈部后仰,术区常规消毒铺巾。做颈前纵或横切口,逐层显露至椎前间隙后,采用C形臂X线机透视确定手术节段。清除手术节段椎间盘,并以咬骨钳及刮匙行椎体次全切除,咬除椎体后缘增生的骨赘,显露并切除后纵韧带,充分减压至硬膜恢复正常。选取合适大小并填塞自体碎骨粒的钛网置入椎体槽内,选择合适大小并预弯的钛板放置于椎体前缘,螺钉固定并锁紧。透视下见内置物位置及大小均良好后,仔细止血并冲洗切口,放置引流管,逐层关闭手术切口。
1.3 评价指标采用日本骨科学会(JOA)评分[9]对患者术前、术后神经功能进行评价,JOA评分改善率(%)=(术后评分-术前评分)/(17-术前评分)×100%。采用疼痛视觉模拟量表(VAS)评分[10]评价手术前后颈部疼痛情况。测量手术前后C2~7 Cobb角评价颈椎生理曲度改善情况。记录邻椎病、吞咽困难、声音嘶哑、血肿、神经损伤、内置物移位、螺钉断裂等并发症发生情况,末次随访时观察手术节段融合情况。植骨融合判断标准:动力位X线片上融合节段无相对位移,棘突间无角度变化,在终板和植骨块之间有连续骨小梁、骨桥形成,且融合器周围无透亮带。随访时间点为术前,术后3 d、3个月、6个月及12个月,于各随访时间点记录JOA评分、VAS评分、C2~7 Cobb角、并发症发生情况。
1.4 统计学处理采用SPSS 21.0软件对数据进行统计分析。符合正态分布的计量资料以x±s表示,组间比较采用独立样本t检验,组内各时间点比较采用配对t检验;计数资料以百分比表示,组间比较采用χ2检验;以P < 0.05为差异有统计学意义。
2 结果所有手术顺利完成,术中未发生脊髓损伤、动脉损伤出血、食管瘘及死亡等严重并发症。2组手术节段、手术时间、术中出血量、随访时间差异无统计学意义(P > 0.05,表 1)。2组末次随访JOA评分、VAS评分及C2~7 Cobb角较术前改善,差异均有统计学意义(P < 0.05,表 1);且ACAF组末次随访JOA评分、JOA评分改善率、VAS评分优于ACCF组,差异均有统计学意义(P < 0.05,表 1)。ACAF组术后发生吞咽困难3例,轴性症状1例,声音嘶哑1例,C5神经根病1例,并发症发生率为21.4%(6/28);ACCF组术后发生吞咽困难4例,轴性症状1例,内置物相关并发症2例,声音嘶哑1例,C5神经根病1例,脑脊液漏2例,神经功能恶化1例,并发症发生率为36.4%(12/33),组间差异有统计学意义(P < 0.05)。末次随访时2组手术节段融合率均为100%。2组典型病例影像学资料见图 1、2。
MCSMSS是导致颈椎脊髓功能障碍的常见原因之一,非手术治疗通常效果不佳,常须手术解除脊髓压迫[11-12]。目前治疗该疾病的术式主要包括前路和后路2种入路。
颈椎后路减压术是目前常用的治疗MCSMSS的手术方式,其疗效也得到了众多学者[13-14]的认可,主要包括椎板切除联合侧块螺钉内固定术和颈椎后路单开门椎管扩大椎板成形术等。颈椎后路手术通过切除颈椎后方结构实现脊髓的向后漂移,从而获得脊髓间接减压的手术效果。但有学者认为[15-17],后路手术作为一种脊髓间接减压的术式,不直接切除致压物,无法有效减压,且由于术后脊髓的向后漂移,易导致轴性症状和C5神经根麻痹等并发症的发生,应尽量选择前路术式以直接切除致压物,实现脊髓的直接减压。
前路手术可实现脊髓的直接减压,具有较好的临床效果,已被许多外科医师接受[18]。其中,ACCF是颈椎前路手术的常用术式,但ACCF对医师手术操作技术要求较高,并且与手术相关的并发症发生率更高。Wang等[19]比较了ACCF和其他手术方法的手术效果,发现ACCF术后神经功能恶化及脑脊液漏发生率最高(4.2%)。在ACCF术中操作时,须将压迫物与硬膜囊进行直接分离,部分患者压迫物与硬膜囊粘连,极易导致硬膜囊破损,从而导致脑脊液漏及神经功能恶化。为降低脑脊液漏及神经功能恶化的发生率,ACCF术中须仔细操作,对与硬膜囊粘连的患者可采用“漂浮法”等策略。有学者将ACAF用于治疗MCSMSS,获得了良好的临床效果[20]。ACAF将椎体与压迫物视为一个整体进行前移,既避免了术中直接分离压迫物与硬膜囊,大大降低脑脊液漏及神经功能恶化的发生率,又可实现脊髓的直接减压。
本研究结果显示,2组末次随访JOA评分、VAS评分均较术前显著改善,患者神经功能改善良好,与既往研究结果一致[8, 18, 21];且ACAF组末次随访JOA评分、JOA评分改善率、VAS评分均优于ACCF组。林世荣等[22]的研究发现,与ACCF 1.0 cm的开槽减压宽度相比,ACCF 1.4 cm的开槽减压宽度能显著改善患者颈部功能障碍。孔庆捷等[23]的研究也证实,ACAF各节段的减压开槽宽度均显著大于ACCF,且ACAF各节段的椎间孔入口区的减压有效率普遍显著优于ACCF。孙璟川等[24]也报道ACCF的减压宽度通常为12 ~ 14 mm,ACAF开槽及椎间隙的减压宽度可达到18 ~ 20 mm,其减压开槽宽度包含双侧脊神经前根起始点硬椎管内向外侧、尾端走行的大部分脊神经结构,故ACAF的减压是对脊髓和神经根的同时减压,较为充分,其减压范围可达双侧椎弓根内侧壁(图 3),是ACAF术后JOA评分改善率优于ACCF的重要原因。
恢复颈椎正常生理曲度是颈椎手术的目的之一,良好的颈椎曲度可减缓颈椎退行性变,有研究[25]表明,术后颈椎曲度过大或过小均会加剧邻近节段的退行性变。ACAF和ACCF均可通过椎间融合器、钛网及钛板等内固定器械的纵向撑开作用,有效增加颈椎前柱高度,从而恢复颈椎正常的生理曲度[26]。本研究结果也显示,2组C2~7 Cobb角术后均较术前明显改善。当颈椎生理曲度消失甚至发生反弓等异常情况时,颈部肌肉的受力状态也会发生相应改变,颈部肌肉将会长期处于拉伸状态,该状态将会导致肌肉筋膜发生无菌性炎性反应,从而导致轴性症状的发生。ACAF和ACCF术中须撑开责任节段的上、下2个椎体,并置入钛网、椎间融合器及钛板,这些操作可使颈椎生理曲度得到不同程度的恢复,降低术后颈部轴性症状的发生率。但也有研究[27]报道颈椎前路手术后发生轴性症状。本研究中2组分别有1例患者出现轴性症状,可能原因为术中椎间隙撑开幅度过大,导致关节囊及神经根周围张力过大,从而导致疼痛[28-29]。
本研究中ACAF组发生吞咽困难3例,ACCF组4例,2组发生声音嘶哑各1例,经对症治疗后均于3个月内恢复。吞咽困难和声音嘶哑是颈椎前路手术的常见并发症,发生率为53%[30]。术中牵拉及操作导致的咽喉部肌肉、神经损伤及钢板等内置物的置入均是导致吞咽困难的原因。声音嘶哑多是由前路手术显露过程中不慎损伤喉返神经或喉上神经导致。内置物相关并发症是ACCF最常见的并发症之一,可能与骨质疏松、应力集中或终板的过度处理相关,本研究中ACCF组发生2例内置物相关并发症,ACAF组未发生内置物相关并发症。对于多节段颈椎病,过度椎体切除后的重建是一个严峻的挑战。相关生物力学研究[31-32]表明,ACCF采用内固定器械越大,术后内置物脱位、沉降和内固定失败的发生率越高。有研究[23]通过生物力学和有限元分析证实,ACAF具有明显优于ACCF的术后稳定性和远期稳定性,多节段置钉分散应力的理论在ACAF中同样适用,ACAF发生内固定失败、头尾端螺钉松动、拔出及内置物沉降的风险均小于ACCF。
综上所述,ACAF和ACCF治疗MCSMSS均有较好的短期临床疗效。ACAF作为一种新的术式,可显著改善患者神经功能,并且比传统ACCF的并发症更少,可作为治疗MCSMSS的一种选择方案。但本研究也存在随访时间短、样本量小等不足,后续须通过大样本随机对照试验对ACAF的减压面积、开槽宽度等影像学指标及远期临床效果进行进一步研究。
[1] |
Mitsunaga LK, Klineberg EO, Gupta MC. Laminoplasty techniques for the treatment of multilevel cervical stenosis[J]. Adv Orthop, 2012, 2012: 307916. |
[2] |
贾连顺. 颈椎病的现代概念[J]. 脊柱外科杂志, 2004, 2(2): 123-126. |
[3] |
Li Z, Guo Z, Hou S, Zhao Y, et al. Segmental anterior cervical corpectomy and fusion with preservation of middle vertebrae in the surgical management of 4-level cervical spondylotic myelopathy[J]. Eur Spine J, 2014, 23(7): 1472-1479. DOI:10.1007/s00586-014-3208-z |
[4] |
Wang T, Tian XM, Liu SK, et al. Prevalence of complications after surgery in treatment for cervical compressive myelopathy: a meta-analysis for last decade[J]. Medicine(Baltimore), 2017, 96(12): e6421. |
[5] |
Sun K, Wang S, Sun J, et al. Surgical outcomes after anterior controllable antedisplacement and fusion compared with single open-door laminoplasty: preliminary analysis of postoperative changes of spinal cord displacements on T2-weighted magnetic resonance imaging[J]. World Neurosurg, 2019, 127: e288-e298. DOI:10.1016/j.wneu.2019.03.108 |
[6] |
孙璟川, 史建刚. 颈椎前路椎体骨化物化复合体可控前移融合术的关键技术和并发症预防[J]. 中国脊柱脊髓杂志, 2020, 30(3): 282-288. |
[7] |
史建刚, 孙璟川, 郭永飞, 等. 颈椎后纵韧带骨化前路骨化物复合体前移技术及临床疗效分析[J]. 中华骨科杂志, 2018, 38(15): 919-926. DOI:10.3760/cma.j.issn.0253-2352.2018.15.004 |
[8] |
Sun J, Shi J, Xu X, et al. Anterior controllable antidisplacement and fusion surgery for the treatment of multilevel severe ossification of the posterior longitudinal ligament with myelopathy: preliminary clinical results of a novel technique[J]. Eur Spine J, 2018, 27(6): 1469-1478. DOI:10.1007/s00586-017-5437-4 |
[9] |
Yonenobu K, Abumi K, Nagata K, et al. Interobserver and intraobserver reliability of the Japanese Orthopaedic Association scoring system for evaluation of cervical compression myelopathy[J]. Spine(Phila Pa 1976), 2001, 26(17): 1890-1895. DOI:10.1097/00007632-200109010-00014 |
[10] |
Huskisson EC. Measurement of pain[J]. Lancet, 1974, 2(7889): 1127-1131. |
[11] |
Häckel M, Stejskal L, Kramár F. Anterior cervical corpectomy in the treatment of multilevel degenerative stenoses with spondylotic myelopathy. Personal experience with therapy and a literature review[J]. R Rozhl Chir, 2001, 80(4): 163-169. |
[12] |
Zhao CM, Chen Q, Zhang Y, et al. Anterior cervical discectomy and fusion versus hybrid surgery in multilevel cervical spondylotic myelopathy: a meta-analysis[J]. Medicine(Baltimore), 2018, 97(34): e12618. |
[13] |
Kiely PD, Quinn JC, Du JY, et al. Posterior surgical treatment of cervical spondylotic myelopathy: review article[J]. HSS J, 2015, 11(1): 36-42. DOI:10.1007/s11420-014-9425-5 |
[14] |
黄润之, 张海龙. 颈椎后纵韧带骨化症手术治疗研究进展[J]. 脊柱外科杂志, 2018, 16(5): 316-321. DOI:10.3969/j.issn.1672-2957.2018.05.014 |
[15] |
Saetia K, Cho D, Lee S, et al. Ossification of the posterior longitudinal ligament: a review[J]. Neurosurg Focus, 2011, 30(3): E1. DOI:10.3171/2010.11.FOCUS10276 |
[16] |
Yoshii T, Sakai K, Hirai T, et al. Anterior decompression with fusion versus posterior decompression with fusion for massive cervical ossification of the posterior longitudinal ligament with a > /=50% canal occupying ratio: a multicenter retrospective study[J]. Spine J, 2016, 16(11): 1351-1357. DOI:10.1016/j.spinee.2016.07.532 |
[17] |
Tani T, Ushida T, Ishida K, et al. Relative safety of anterior microsurgical decompression versus laminoplasty for cervical myelopathy with a massive ossified posterior longitudinal ligament[J]. Spine(Phila Pa 1976), 2002, 27(22): 2491-2498. |
[18] |
Wang H, Sun J, Sun K, et al. Anterior controllable antedisplacement fusion(ACAF) for multilevel cervical spondylotic myelopathy with spinal stenosis: comparison with anterior cervical corpectomy and fusion(ACCF)[J]. World Neurosurg, 2019, 124: e740-e747. |
[19] |
Wang H, Zou F, Jiang J, et al. Analysis of radiography findings of ossification of nuchal ligament of cervical spine in patients with cervical spondylosis[J]. Spine(Phila Pa 1976), 2014, 39(1): E7-E11. |
[20] |
Yang H, Yang Y, Shi J, et al. Anterior controllable antedisplacement fusion as a choice for degenerative cervical kyphosis with stenosis: preliminary clinical and radiologic results[J]. World neurosurg, 2018, 118: e562-e569. |
[21] |
Yang H, Xu X, Shi J, et al. Anterior controllable antedisplacement fusion as a choice for ossification of posterior longitudinal ligament and degenerative kyphosis and stenosis: postoperative morphology of dura mater and probability analysis of epidural hematoma based on 63 patients[J]. World Neurosurg, 2019, 121: e954-e961. |
[22] |
林世荣, 温超海, 梁科友, 等. 不同开槽减压宽度在ACCF治疗脊髓型颈椎病的疗效对比[J]. 颈腰痛杂志, 2019, 40(4): 480-482. |
[23] |
孔庆捷. ACAF技术的生物力学与临床应用解剖学研究[D]. 上海: 海军军医大学, 2020.
|
[24] |
孙璟川, 史建刚, 王元, 等. 颈椎前路椎体骨化物复合体前移融合术治疗严重颈椎后纵韧带骨化症[J]. 第二军医大学学报, 2017, 38(8): 1053-1059. |
[25] |
Odate S, Shikata J, Kimura H, et al. Anterior corpectomy with fusion in combination with an anterior cervical plate in the management of ossification of the posterior longitudinal ligament[J]. J Spinal Disord Tech, 2012, 25(3): 133-137. |
[26] |
孟宪中, 曹俊明, 等. 颈前路植骨块过高对颈椎曲度及轴性症状的远期影响[J]. 中国修复重建外科杂志, 2009, 23(8): 899-903. |
[27] |
刘强, 李义强, 方晔, 等. 颈椎后纵韧带骨化症前后路手术临床疗效的对比分析[J]. 广西医科大学学报, 2018, 35(8): 1151-1153. |
[28] |
李华, 丁文元, 牛洪峰, 等. 颈椎前路术后融合节段椎间隙高度变化与轴性症状的相关性研究[J]. 中国矫形外科杂志, 2008, 16(23): 1774-1777. |
[29] |
王海波, 王元, 孙璟川, 等. 颈椎前路椎间盘切除融合术术中恢复椎间隙自然高度对术后疗效的影响[J]. 脊柱外科杂志, 2018, 16(5): 284-288. |
[30] |
Matz PG, Holly LT, Mummaneni PV, et al. Anterior cervical surgery for the treatment of cervical degenerative myelopathy[J]. J Neurosurg Spine, 2009, 11(2): 170-173. |
[31] |
Ouyang P, Li J, He X, et al. Biomechanical comparison of 1-level corpectomy and 2-level discectomy for cervical spondylotic myelopathy: a finite element analysis[J]. Med Sci Monit, 2020, 26: e919270. |
[32] |
Liu N, Lu T, Wang Y, et al. Effects of new cage profiles on the improvement in biomechanical performance of multilevel anterior cervical corpectomy and fusion: a finite element analysis[J]. World Neurosurg, 2019, 129: e87-e96. |