骨质疏松性骨折是骨质疏松症最严重的并发症之一,其中骨质疏松性椎体压缩性骨折(OVCF)最为常见[1]。作为治疗OVCF的常用术式,经皮椎体强化术(PVA)有着快速减轻疼痛、改善功能和恢复椎体高度的特点,然而,PVA也会造成椎体二次骨折等并发症[2]。PVA术后再骨折的发生率为3.8% ~ 38.0%,其中邻近椎体再骨折(AVF)占58.8% ~ 63.8%[3-7]。既往研究[8]发现,性别、骨密度、骨折节段、椎内裂、骨水泥体积、骨水泥椎间隙渗漏等因素与AVF密切相关。然而,目前PVA术后发生AVF的相关风险因素尚存争议,并缺少客观有效的评价工具。基于此,本研究探讨OVCF患者PVA术后发生AVF的危险因素,建立术后发生AVF的风险预测模型,并通过构建实用的简易评分量表为OVCF患者PVA术后AVF的预防提供一定的参考。
1 资料与方法 1.1 一般资料纳入标准:①符合《骨质疏松性椎体压缩性骨折诊治专家共识(2021版)》[9]的OVCF;②经过3个月规范的非手术治疗无效;③病例资料完整;④均采用单纯PVA治疗;⑤规律随访1年以上。排除标准:①其他原因,如肿瘤、结核、代谢性骨病等引起的胸腰椎骨折;②术前有脊髓、马尾或神经根受压表现。根据上述标准,纳入2018年1月—2022年1月采用PVA治疗的OVCF患者313例,其中男53例,女260例;年龄为51 ~ 92岁,平均73.0岁;随访时间为13 ~ 26(19.25±4.37)个月。根据术后是否发生AVF分为AVF组(n=86)和对照组(n=227)。本研究经本院伦理审查委员会审批同意[EC.D(BG).016.02.1]。
1.2 评估指标记录患者性别、年龄、体质量指数(BMI)、既往史(吸烟史、饮酒史、高血压史、糖尿病史、冠心病史及骨折史)及骨质疏松症治疗情况。检测患者血清中维生素D、β-Ⅰ型胶原羧基端肽(β-CTX)、骨钙素N端中分子片段(N-MID)水平。在CT上测量椎旁肌HU值,较低的HU值反映了肌肉的脂肪浸润[10];通过绘制包括尽可能多的小梁骨并避开皮质骨的椎体感兴趣区域(ROI)获得椎体HU值,用于评价骨密度[11]。上述影像学指标均由2名脊柱外科医师独立使用OsiriX软件(Lite Version 10.0.2,Pixmeo,Geneva,Switzerland)在L1水平测量获得,若L1发生骨折则选取T12或L2水平。记录骨水泥穿刺入路(单/双侧)、骨水泥注入量、有无骨水泥椎间隙渗漏及骨水泥分布形态(团块/海绵状)。为保证实验数据的准确性,骨水泥分布形态和是否发生骨水泥椎间隙渗漏由2名脊柱外科医师分别独立判断,如有争议则由第3名脊柱外科医师决定。
1.3 统计学处理采用SPSS 26.0软件对数据进行统计分析。符合正态分布的计量资料以x±s表示,组间比较采用独立样本t检验或Mann-Whitney U检验;计数资料以例数和百分数(%)表示,组间比较采用χ2检验或Fisher精确概率检验;以P < 0.05为差异有统计学意义。有统计学意义的因素进一步纳入多因素logistic回归模型进行分析,确定独立危险因素,并计算各风险因素的比值比(OR);风险因素(OR > 1)根据其OR值的整数部分直接赋分,保护性因素(OR < 1)取OR值倒数的整数部分进行赋分,根据最大约登指数确定连续型变量的最佳临界值,并据此构建简易评分量表。利用受试者工作特征(ROC)曲线根据最大约登指数确定预测PVA术后AVF评分的最佳临界值。
2 结果单因素分析结果显示,2组在年龄、骨折史、抗骨质疏松药物治疗、血清维生素D水平、椎体HU值、椎旁肌HU值、骨水泥椎间隙渗漏和骨水泥分布形态方面差异均有统计学意义(P < 0.05,表 1)。
![]() |
表 1 OVCF患者PVA术后AVF的单因素分析 Tab. 1 Univariate analysis of AVF after PVA for OVCF patients |
将上述有统计学意义的指标纳入多因素logistic回归分析,结果显示,高龄、未行抗骨质疏松药物治疗、存在骨水泥椎间隙渗漏和椎体HU值与PVA术后AVF具有相关性(表 2)。进一步对年龄、椎体HU值采用ROC曲线进行分析,根据最大约登指数取最佳临界值,结果显示,年龄 > 77.5岁、椎体HU值≤65.0为PVA术后AVF的危险因素。
![]() |
表 2 多因素logistic回归分析 Tab. 2 Multivariate logistic regression analysis |
将经过单因素分析及多因素logistic回归分析筛选后最终纳入模型的4项指标进行量化区分,根据OR值构建简易评分量表(表 3)。风险因素根据OR值的整数部分直接赋分:年龄(OR=1.058),年龄 > 77.5岁赋1分、年龄≤77.5岁赋0分;是否有骨水泥椎间隙渗漏(OR=2.702),有赋2分,无赋0分。保护性因素取OR值倒数(1/OR)的整数部分进行赋分,椎体HU值(OR=0.987,1/OR=1.013),椎体HU值≤65.0赋1分、椎体HU值> 65.0赋0分;抗骨质疏松药物治疗(OR=0.356,1/OR=2.809),无赋2分,有赋0分。该简易评分量表的曲线下面积(AUC)为0.758,95%置信区间(CI)为0.700 ~ 0.816,分数≥3分时灵敏度和特异度分别为94.2%和50.7%(图 1)。
![]() |
表 3 预测PVA术后AVF发病风险的简易评分量表 Tab. 3 Simple score scale for predicting the risk of |
![]() |
图 1 简易评分量表的ROC曲线 Fig. 1 ROC curve for simple score scale |
PVA是OVCF患者的常规治疗方法之一。临床研究[12-13]已证实,PVA在缓解疼痛、恢复患者活动能力等方面有着较好的疗效。然而,新发椎体骨折尤其是AVF是PVA术后的常见并发症[14]。目前,对PVA术后发生AVF的相关危险因素研究较多[15-16]。Kim等[17]认为骨密度、椎体高度恢复率、既往骨折史和骨水泥椎间隙渗漏与PVA术后AVF有关;Chen等[18]认为糖尿病和术后Cobb角的改变是PVA术后发生AVF的主要危险因素;Gong等[19]认为,PVP术后AVF与邻近节段椎体CT的HU值相关。高龄被视为PVA术后发生AVF的独立危险因素。Wang等[20]的研究发现,AVF组和无AVF组在年龄方面存在显著差异。Tang等[21]通过多因素分析发现,年龄每增加1岁,AVF风险增加3.0%。罗锟等[22]的研究认为,随着年龄的增长,骨密度随之下降,同时,高龄患者基础疾病相对较多,均增加了高龄患者术后发生AVF的风险。本研究结果也显示,年龄 > 77.5岁是PVA术后发生AVF的危险因素,与上述研究结果一致。有研究[23-24]证实,骨质疏松进程加剧可能是继发椎体骨折的危险因素,患者骨密度越低,内部骨小梁就越脆弱,微小的外力即可导致与骨水泥邻近的椎体塌陷。除可承担的应力较小外,张子龙等[25]认为,骨密度越低的患者椎体塌陷越严重,PVA术后骨水泥弥散不均和邻近节段应力改变均可导致AVF。同时,李春涛等[26]通过荟萃分析发现,抗骨质疏松药物治疗可降低术后AVF的发生率;张子龙等[25]通过收集2 216例OVCF患者资料发现,未行抗骨质疏松药物治疗是经皮椎体成形术(PVP)后发生AVF的危险因素;Chen等[27]的研究也发现,OVCF患者PVA术后经规范的抗骨质疏松药物治疗后,AVF发生率显著降低。本研究结果亦显示未行抗骨质疏松药物治疗和椎体HU值≤65.0是PVA术后发生AVF的危险因素。此外,骨水泥椎间隙渗漏也被认为是PVA术后发生AVF的重要原因[28]。Wang等[29]的研究也证实骨水泥椎间隙渗漏是导致PVA术后AVF的主要危险因素;Nieuwenhuijse等[30]的研究认为,椎间盘内骨水泥渗漏量越大,发生AVF可能性越高。有研究[31]表明,骨水泥渗漏到椎间隙,由于缓冲功能丧失、应力聚焦等因素对邻近椎体造成破坏,使AVF发生风险升高。本研究多因素回归分析结果也显示骨水泥椎间隙渗漏是PVA术后发生AVF的危险因素,与上述研究结果一致。
然而,现行研究主要集中于对AVF危险因素的探索,存在着难以量化、无法在临床快速计算等缺点[22, 32-33]。虽然有研究[34]构建了AVF发生风险的评估模型,但因计算复杂等因素限制了其临床应用。因此,构建简易的AVF评分量表以识别AVF高风险人群并予以早期干预,对改善OVCF患者预后具有重要意义。本研究多因素logistic分析结果提示,年龄 > 77.5岁、未行抗骨质疏松药物治疗、存在骨水泥椎间隙渗漏和椎体HU值≤65.0是PVA术后发生AVF的独立危险因素。本研究依据上述危险因素的OR值对其进行赋分,并构建简易评分量表,量表分值可量化评估PVA术后AVF的发生风险。本研究进一步采用ROC曲线来评估该量表的预测性能,结果显示,当患者评分≥3分时,PVA术后发生AVF的风险显著增加,其预测的灵敏度和特异度分别为94.2%和50.7%。
本研究的局限性在于病例数较少,下一步的研究将扩大样本量并划分训练集和测试集,进一步验证简易评分量表的预测效能。此外,该简易评分量表仅适用于术后2年内发生的AVF,且暂未纳入除AVF外的其他临床结果,在未来的研究中有待进一步完善。综上所述,本研究构建了用于评估OVCF患者PVA术后AVF发生风险的简易评分量表,该评分量表可对AVF的高危人群进行有效筛查,当量表评分≥3分时,患者PVA术后发生AVF的风险将显著增加。针对高危患者应予以积极的抗骨质疏松药物治疗,规律门诊随访,以预防术后AVF的发生。
[1] |
张树宝, 王善金, 徐浩伟, 等. 椎体增强术后再发骨折的风险因素研究进展[J]. 中国矫形外科杂志, 2020, 28(18): 1682-1685. |
[2] |
Cavka M, Delimar D, Rezan R, et al. Complications of percutaneous vertebroplasty: a pictorial review[J]. Medicina(Kaunas), 2023, 59(9): 1536. |
[3] |
陈昊, 潘文琦, 张有磊, 等. 681例胸腰椎骨质疏松性椎体压缩骨折流行病学和临床特征分析[J]. 中国修复重建外科杂志, 2022, 36(7): 873-880. |
[4] |
Goldman-Daleo H, Rachman B, Mhaskar R. Adjacent fracture rates following balloon kyphoplasty in osteoporotic vertebral compression fractures: a case series[J]. Cureus, 2023, 15(6): e40651. |
[5] |
Han SL, Wan SL, Li QT, et al. Is vertebroplasty a risk factor for subsequent vertebral fracture, meta-analysis of published evidence?[J]. Osteoporos Int, 2015, 26(1): 113-122. DOI:10.1007/s00198-014-2848-5 |
[6] |
Tseng YY, Yang TC, Tu PH, et al. Repeated and multiple new vertebral compression fractures after percutaneous transpedicular vertebroplasty[J]. Spine(Phila Pa 1976), 2009, 34(18): 1917-1922. DOI:10.1097/BRS.0b013e3181ac8f07 |
[7] |
Takahashi S, Hoshino M, Yasuda H, et al. Development of a scoring system for predicting adjacent vertebral fracture after balloon kyphoplasty[J]. Spine J, 2019, 19(7): 1194-1201. DOI:10.1016/j.spinee.2019.02.013 |
[8] |
Zhang TY, Wang YH, Zhang PX, et al. What are the risk factors for adjacent vertebral fracture after vertebral augmentation? A meta-analysis of published studies[J]. Global Spine J, 2022, 12(1): 130-141. DOI:10.1177/2192568220978223 |
[9] |
中国康复医学会骨质疏松预防与康复专业委员会. 骨质疏松性椎体压缩骨折诊治专家共识(2021版)[J]. 中华医学杂志, 2021, 101(41): 3371-3379. DOI:10.3760/cma.j.cn112137-20210625-01436 |
[10] |
Newman AB, Kupelian V, Visser M, et al. Strength, but not muscle mass, is associated with mortality in the health, aging and body composition study cohort[J]. J Gerontol A Biol Sci Med Sci, 2006, 61(1): 72-77. DOI:10.1093/gerona/61.1.72 |
[11] |
Zaidi Q, Danisa OA, Cheng W. Measurement techniques and utility of Hounsfield unit alues for assessment of bone quality prior to spinal instrumentation: a review of current literature[J]. Spine(Phila Pa 1976), 2019, 44(4): E239-E244. DOI:10.1097/BRS.0000000000002813 |
[12] |
Clark W, Bird P, Gonski P, et al. Safety and efficacy of vertebroplasty for acute painful osteoporotic fractures(VAPOUR): a multicentre, randomised, double-blind, placebo-controlled trial[J]. Lancet, 2016, 388(10052): 1408-1416. DOI:10.1016/S0140-6736(16)31341-1 |
[13] |
Kamei S, Noguchi T, Shida Y, et al. The safety and efficacy of percutaneous vertebroplasty for patients over 90 years old[J]. Jpn J Radiol, 2019, 37(2): 178-185. DOI:10.1007/s11604-018-0797-1 |
[14] |
汤杰, 蔡海康, 徐镇, 等. 骨质疏松山羊椎体骨水泥强化后对其相邻椎体生物力学的影响[J]. 脊柱外科杂志, 2023, 21(1): 44-49. DOI:10.3969/j.issn.1672-2957.2023.01.008 |
[15] |
Lee DG, Park CK, Park CJ, et al. Analysis of risk factors causing new symptomatic vertebral compression fractures after percutaneous vertebroplasty for painful osteoporotic vertebral compression fractures: a 4-year follow-up[J]. J Spinal Disord Tech, 2015, 28(10): E578-E583. DOI:10.1097/BSD.0000000000000043 |
[16] |
Lee HJ, Park J, Lee IW, et al. Clinical, radiographic, and morphometric risk factors for adjacent and remote vertebral compression fractures over a minimum follow-up of 4 years after percutaneous vertebroplasty for osteoporotic vertebral compression fractures: novel three-dimensional voxel-based morphometric analysis[J]. World Neurosurgery, 2019, 125: e146-e157. DOI:10.1016/j.wneu.2019.01.020 |
[17] |
Kim MH, Lee AS, Min SH, et al. Risk factors of new compression fractures in adjacent vertebrae after percutaneous vertebroplasty[J]. Asian Spine J, 2011, 5(3): 180-187. DOI:10.4184/asj.2011.5.3.180 |
[18] |
Chen C, Fan P, Xie X, et al. Risk factors for cement leakage and adjacent vertebral fractures in kyphoplasty for osteoporotic vertebral fractures[J]. Clin Spine Surg, 2020, 33(6): E251-E255. DOI:10.1097/BSD.0000000000000928 |
[19] |
Gong K, Song M, Shang C, et al. Risk factors for new adjacent and remote vertebral fracture after percutaneous vertebroplasty[J]. World Neurosurg, 2024, 182: e644-e644. DOI:10.1016/j.wneu.2023.12.010 |
[20] |
Wang YT, Wu XT, Chen H, et al. Adjacent-level symptomatic fracture after percutaneous vertebral augmentation of osteoporotic vertebral compression fracture: a retrospective analysis[J]. J Orthop Sci, 2014, 19(6): 868-876. DOI:10.1007/s00776-014-0610-7 |
[21] |
Tang B, Liu L, Cui L, et al. Analysis of adjacent vertebral fracture after percutaneous vertebroplasty: do radiological or surgical features matter?[J]. Eur Spine J, 2024, 33(4): 1524-1532. DOI:10.1007/s00586-023-08092-7 |
[22] |
罗锟, 刘家明, 钟南山, 等. 经皮椎体后凸成形术后邻近椎体骨折的列线图预测模型构建[J]. 中国脊柱脊髓杂志, 2023, 33(8): 724-732. |
[23] |
Zhang SB, Chen H, Xu HW, et al. Association between handgrip strength and subsequent vertebral-fracture risk following percutaneous vertebral augmentation[J]. J Bone Miner Metab, 2021, 39(2): 186-192. DOI:10.1007/s00774-020-01131-z |
[24] |
王清泽, 袁欣华, 王相利, 等. 单节段经皮椎体成形术后继发相邻椎体骨折的危险因素[J]. 脊柱外科杂志, 2019, 17(1): 6-10. DOI:10.3969/j.issn.1672-2957.2019.01.002 |
[25] |
张子龙, 井齐明, 乔瑞, 等. 骨质疏松性椎体压缩骨折经皮椎体成形术后邻近椎体新发骨折的危险因素分析[J]. 中国修复重建外科杂志, 2021, 35(1): 20-25. |
[26] |
李春涛, 李文毅, 高尚聚, 等. 中国人群椎体成形术后发生邻近椎体压缩性骨折危险因素Meta分析[J]. 中华骨质疏松和骨矿盐疾病杂志, 2021, 14(6): 638-646. |
[27] |
Chen YC, Lin WC. Can anti-osteoporotic therapy reduce adjacent fracture in magnetic resonance imaging-proven acute osteoporotic vertebral fractures?[J]. BMC Musculoskelet Disord, 2016, 17: 151. DOI:10.1186/s12891-016-1003-1 |
[28] |
姜天淇, 葛泽峰, 田新月, 等. 骨质疏松性椎体压缩性骨折经皮椎体成形术后继发椎体再骨折的相关因素分析[J]. 脊柱外科杂志, 2023, 21(1): 21-25. DOI:10.3969/j.issn.1672-2957.2023.01.004 |
[29] |
Wang M, Li B, Wang Y, et al. The effects of bone cement volume in percutaneous vertebroplasty for thoracolumbar junction vertebral compression fractures: a clinical comparative study[J]. Mediators Inflamm, 2022, 2022: 4230065. |
[30] |
Nieuwenhuijse MJ, Putter H, van Erkel AR, et al. New vertebral fractures after percutaneous vertebroplasty for painful osteoporotic vertebral compression fractures: a clustered analysis and the relevance of intradiskal cement leakage[J]. Radiology, 2013, 266(3): 862-870. |
[31] |
Rho YJ, Choe WJ, Chu YI. Risk factors predicting the new symptomatic vertebral compression fractures after percutaneous vertebroplasty or kyphoplasty[J]. Eur Spine J, 2012, 21(5): 905-911. |
[32] |
张毅, 李唯, 邵杰, 等. 骨质疏松性胸腰椎骨折PVP/PKP术后二次骨折的危险因素分析及预测模型简历[J]. 中国脊柱脊髓杂志, 2023, 33(9): 785-792. |
[33] |
潘彬, 李鑫, 李根, 等. 经皮椎体后凸成形术后继发椎体压缩性骨折的危险因素分析及预测模型的建立与验证[J]. 中国脊柱脊髓杂志, 2023, 33(1): 19-26. |
[34] |
Matsumoto K, Hoshino M, Omori K, et al. Preoperative scoring system for prediction of early adjacent vertebral body fracture after balloon kyphoplasty using X-rays taken in a non-weight-bearing position[J]. World Neurosurg, 2023, 178: e42-e47. |