脊柱外科杂志  2024, Vol.22 Issue(6): 399-404   PDF    
经皮椎体后凸成形术治疗骨质疏松性椎体压缩性骨折手术时机的选择
喻子林, 范春杨, 王家乐, 毛海青     
苏州大学第一附属医院骨科, 苏州 215006
摘要: 目的 探讨经皮椎体后凸成形术(PKP)治疗骨质疏松性椎体压缩性骨折(OVCF)的手术时机。方法 回顾性分析2022年1月—2022年12月采用PKP治疗的238例OVCF患者临床资料,根据从受伤到住院时间不同分为3组,早期组(骨折4周内手术)、中期组(骨折4~8周手术)、晚期组(骨折8周后手术)。在侧位X线片上测量伤椎前缘、中部高度,伤椎Cobb角及楔形角,并计算伤椎前缘、中部压缩率和高度恢复率。于术前、出院前、术后6个月采用疼痛视觉模拟量表(VAS)评分评估疼痛程度,采用Oswestry功能障碍指数(ODI)评估腰椎功能。并记录骨水泥渗漏发生情况。结果 骨水泥渗漏发生率为6.3%。早期组术后1 d、6个月的伤椎前缘压缩率低于中、晚期组,术后6个月的椎体前缘高度恢复率优于中、晚期组,差异均有统计学意义(P < 0.05)。早期组术后1 d的椎体中部压缩率低于中、晚期组,术后1 d伤椎中部高度恢复率优于中、晚期组,差异均有统计学意义(P < 0.05)。早期组术后1 d、6个月伤椎Cobb角、楔形角较术前明显改善,差异均有统计学意义(P < 0.05)。早期组Cobb角和楔形角变化值优于中、晚期组,差异均有统计学意义(P < 0.05)。3组患者各随访时间点VAS评分和ODI较术前明显改善,差异均有统计学意义(P < 0.05);3组各随访时间点VAS评分和ODI组间差异均无统计学意义(P>0.05)。结论 OVCF患者早期采用PKP治疗能更好地恢复椎体高度和角度,有助于减轻患者痛苦和术后椎体形态的恢复。
关键词: 胸椎    腰椎    骨折, 压缩性    骨质疏松    椎体后凸成形术    
Selection of surgical timing for percutaneous kyphoplasty in treatment of osteoporotic vertebral compression fractures
Yu Zilin, Fan Chunyang, Wang Jiale, Mao Haiqing     
Department of Orthopaedics, First Affiliated Hospital, Soochow University, Suzhou 215006, Jiangsu, China
Abstract: Objective To investigate the appropriate timing of surgery for percutaneous kyphoplasty(PKP) in the treatment of osteoporotic vertebral compression fractures(OVCF). Methods Data of 238 OVCF patients treated with PKP from January 2022 to December 2022 were retrospectively analyzed, and these patients were divided into 3 groups according to the length of time from injury to hospitalization: early group(operation within 4 weeks after fracture), middle group(operation within 4 to 8 weeks after fracture), and late group(operation after 8 weeks after fracture). The anterior and middle heights of injured vertebrae, Cobb angle and wedge angle of injured vertebrae were measured on lateral roentgenograph, and the compression rate and the recovery rate of the height of injured vertebrae were calculated. At pre-operation, before discharge and at postoperative 6 months, pain intensity was assessed by the visual analog scale(VAS) score, and lumbar function was evaluated with the Oswestry disability index(ODI). The incidence of bone cement leakage was also recorded. Results The bone cement leakage rate was 6.3%. The compression rate of anterior height of injured vertebrae in the early group was lower than that in the middle and late groups at postoperative 1 d and 6 months, and the recovery rate of anterior height of injured vertebrae at postoperative 6 months was better than that in the middle and late groups, all with a statistical significance(P < 0.05). The compression rate of middle height of injured vertebrae in the early group was lower than that in the middle and late groups at postoperative 1 d, and the recovery rate of middle height of injured vertebrae at postoperative 1 d was better than that in the middle and late groups, all with a statistical significance(P < 0.05). The Cobb angle and wedge angle of the injured vertebrae in the early group were significantly improved at postoperative 1 d and 6 months, with statistical significances(P < 0.05). The change value of Cobb angle and wedge angle in the early group were better than those in the middle and late groups, with statistical significances(P < 0.05). The VAS score and ODI of the 3 groups were significantly improved at each follow-up time point, with statistical significances(P < 0.05). There was no significant difference in VAS score and ODI between the 3 groups at each follow-up time point(P>0.05). Conclusion Early application of PKP treatment in patients with OVCF can lead to better restoration of vertebral height and alignment, helping to alleviate patient discomfort and improve postoperative vertebral morphology.
Key words: Thoracic vertebrae    Lumbar vertebrae    Fractures, compression    Osteoporosis    Kyphoplasty    

骨质疏松性椎体压缩性骨折(OVCF)是老年骨质疏松患者最常见的骨折,常导致患者腰背部疼痛,严重影响老年患者生活质量,给医疗资源分配带来巨大压力[1-2]。有报道[3-4]显示,全世界每年约有140万人受到骨质疏松症的影响,同时随着社会老龄化的加剧,OVCF人数在未来会持续增加,这将导致更多的患者生活质量下降,并造成严重的经济负担。大多数情况下,非手术治疗可以减轻患者疼痛,但考虑到老年患者非手术治疗周期长以及长期卧床所引起的并发症,手术仍是OVCF患者的主要选择[5-7]。经皮椎体后凸成形术(PKP)是治疗OVCF的主流术式,术后可立即消除疼痛并恢复椎体高度,对短期症状缓解有显著效果。在长期随访中,PKP术后1年的邻近椎体骨折风险为27%,骨折椎体再次塌陷的发生率为10%[8-11]。这些术后并发症与患者的年龄、骨密度、具体手术细节和骨水泥用量等因素密切相关[12]。考虑到受损椎体在骨折发生后存在愈合过程,而这一过程往往在手术治疗的过程中被忽视,在不同的时间点进行PKP意味着在骨折椎体愈合的不同时期进行手术,这将会对椎体产生不同的影响,因此,合适的手术时机能改善患者短期症状的同时具有更长远的良好预后。

OVCF在老年患者中可能隐匿发生,其导致的腰背痛常与其他疾病混淆,导致延迟诊治[13]。Yannick等[14]发现,较早进行手术治疗能更好地恢复椎体高度,且接受手术治疗的患者相比接受非手术治疗的患者使用的止痛药物更少。Minamide等[7]的研究也得到了类似结果。然而,上述研究中的患者病情相对较重,且多数是在规范的非手术治疗无效后再接受手术治疗。在临床实践中,有相当一部分患者在OVCF早期并没有接受规范治疗,骨折椎体处于自然愈合过程[15],这给了研究者观察脊柱骨折自然愈合过程的机会,也能够进一步探索在愈合过程的不同时机进行手术干预对骨折预后的影响。由于结构、位置和稳定性不同,脊柱骨折的自然愈合过程与长骨骨折的自然愈合过程有很大不同[16]。有研究[17]发现,OVCF的骨折愈合时间明显长于长骨骨折,考虑原因,一方面可能是OVCF造成血液灌注不足;另一方面可能是骨质疏松阻碍了骨折椎体内部的成骨过程[18-19]。因此,与长骨骨折相比,脊柱骨折的自然愈合需要更长时间,骨折愈合的3个阶段也相对延长。结合既往研究[20-21],本研究组将OVCF患者骨折椎体的愈合过程分为3个时期:血肿机化期(椎体骨折后4周内),骨痂形成期(骨折后4~8周),骨痂塑形期(骨折8周后)。基于此,本研究组回顾性研究在OVCF不同阶段采用PKP治疗的患者的预后,并试图为手术时机的选择提供可靠的临床依据。

1 资料和方法 1.1 一般资料

纳入标准:①年龄为60~90岁;②骨密度T值≤-2.5;③骨折节段位于T4~L5,为首次单节段骨折,且伴有明显症状(如疼痛、活动受限),均未进行规范的非手术治疗;④手术前后影像学资料完整;⑤非肿瘤引起的病理性骨折。排除标准:①凝血功能明显异常;②合并脊柱恶性肿瘤、结核;③合并严重心肺基础疾病,无法耐受手术。根据上述标准,纳入2022年1月—2022年12月采用PKP治疗的238例OVCF患者临床资料,手术均由同一手术团队完成,根据患者从受伤到住院时间分为3组,早期组(骨折4周内手术)、中期组(骨折4~8周手术)、晚期组(骨折8周后手术)。3组患者一般资料差异无统计学意义(P > 0.05,表 1),具有可比性。本研究经本院伦理委员会审核备案,患者均知情同意并签署知情同意书。

表 1 3组患者一般资料 Tab. 1 General information of 3 groups
1.2 观察指标

由2名受过脊柱成像测量培训、临床经验丰富的骨科医师在手术前后侧位X线片上测量椎体前缘、中部高度,伤椎Cobb角及楔形角[24],并计算椎体压缩率和椎体高度恢复率。伤椎Cobb角即伤椎上位椎体上终板和下位椎体下终板延长线间的夹角。楔形角即伤椎上终板延长线与下终板延长线间的夹角。椎体压缩率(%)=骨折椎体高度/骨折椎体上、下相邻椎体高度平均值×100%。椎体高度恢复率(%)=(术后骨折椎体高度-术前骨折椎体高度)/骨折椎体上、下相邻椎体高度平均值×100%。所有X线片均采用东软智慧医学影像信息系统(PACS/RIS)进行分析。于术前、出院前、术后6个月采用疼痛视觉模拟量表(VAS)评分[25]评估疼痛程度,采用Oswestry功能障碍指数(ODI)[26]评估腰椎功能。并记录骨水泥渗漏发生情况。

1.3 统计学处理

采用SPSS 26.0软件对数据进行统计分析。符合正态分布的计量资料以x±s表示,组间比较采用独立样本t检验,组内不同时间点比较采用配对t检验;以P < 0.05为差异有统计学意义。

2 结果

共发生骨水泥渗漏15例,其中早期组8例、中期组2例、晚期组5例,骨水泥渗漏发生率为6.3%。

3组术后1 d、6个月的伤椎前缘、中部压缩率均较术前改善,差异均有统计学意义(P < 0.05,表 2)。早期组术后1 d、6个月的伤椎前缘压缩率低于中、晚期组,术后6个月的伤椎前缘高度恢复率优于中、晚期组,差异均有统计学意义(P < 0.05,表 2)。早期组术后1 d的伤椎中部压缩率低于中、晚期组,术后1 d伤椎中部高度恢复率优于中、晚期组,差异均有统计学意义(P < 0.05,表 2)。早期组术后1 d、6个月伤椎Cobb角、楔形角较术前明显改善,差异均有统计学意义(P < 0.05,表 2)。早期组Cobb角和楔形角变化值优于中、晚期组,差异均有统计学意义(P < 0.05,表 2)。3组患者各随访时间点VAS评分和ODI较术前明显改善,差异均有统计学意义(P < 0.05,表 2);3组各随访时间点VAS评分和ODI组间差异均无统计学意义(P > 0.05,表 2)。

表 2 3组患者观察指标 Tab. 2 Observation indicators of 3 groups of patients
3 讨论

PKP是治疗OVCF的主流术式之一,其具有减少创伤、缓解疼痛、恢复椎体高度等优点[27]。与非手术治疗相比,PKP被认为是更好的治疗方案,可早期恢复患者日常活动,减少长期卧床带来的并发症[28]。但是,OVCF患者的手术时机长期存在争议,关于OVCF患者是否应立即接受手术治疗尚无定论[29-30]。Zhou等[5]将患者的手术时机分为骨折发生后4周内和4周后,这种分类方法过于简单,得出的结果参考价值有限。Palmowski等[14]将患者分为急性组(骨折发生≤2周)、亚急性组(骨折发生2~6周)和慢性组(骨折发生6~51周),该分组参照了一般骨折的愈合过程,分别对应血肿机化期、骨痂形成期和骨痂重塑期,但其忽略了OVCF与一般骨折的区别[31]。在有关OVCF自然愈合过程的研究[17]中,脊柱骨折愈合的周期明显长于长骨骨折,考虑原因如下。①OVCF患者的骨质疏松症阻碍了骨折椎体的成骨过程[18],因此,本就比长骨骨折愈合需要更长时间的脊柱骨折,因骨质疏松症致使自然愈合周期更长,进而使骨折愈合3个阶段相应延长。②椎体骨折后血液供应减少,导致局部微环境营养不足,从而进一步延缓了愈合过程[32-35]。基于此,OVCF的治疗时机应考虑其特有的骨折愈合特点。既往研究[36-37]显示,大多数患者在骨折后4周内水肿信号和疼痛都会得到一定程度缓解,表明患者的骨折愈合以4周为时间节点出现了明显改善,因此,本研究组将4周作为早、中期治疗组的分界点。此外,6~8周的非手术治疗可明显增强椎体稳定性,MRI检查结果也显示比前一时期有所改善[38],表明骨折进一步愈合,其整体稳定性得到增强,因此,本研究组将8周作为中、晚期治疗组的分界点。

本研究中3组患者的一般情况、术前VAS评分和ODI差异无统计学意义,纳入患者的术前症状和腰椎功能状态基本相同。3组出院前和术后6个月的VAS评分及ODI较术前均明显改善,提示不同时期手术均能改善患者症状。3组患者术前伤椎前缘和中部压缩率差异均无统计学意义,表明OVCF导致的椎体塌陷主要取决于骨折发生时椎体承受应力的情况,骨折后的椎体高度随时间进展并不明显。早期组术后1 d伤椎前缘和中部压缩率均优于中、晚期组。在椎体骨折早期,骨折断端处于不稳定状态,因此,对于早期组患者而言,手术能较好地恢复椎体高度。既往研究[7, 14, 39-40]表明,早期手术的优势是血肿和肉芽组织与骨水泥可结合形成牢靠固定,符合骨折早期的病理生理状态。而在椎体骨折中、晚期,骨折椎体内部发生血肿机化,以及成骨作用能够起到可靠的连接作用,因此,手术难以将椎体高度恢复至接近骨折前的水平[41]。本研究组同时收集了伤椎前缘和中部的压缩率,以全面评估不同位置和不同形式的椎体压缩骨折,结果显示,3组患者的伤椎前缘高度恢复率在术后6个月时出现差异,而伤椎中部高度恢复率在术后1 d即出现差异,分析原因可能与PKP手术操作相关,术中球囊扩张和骨水泥注射部位更靠近椎体中部,因此,伤椎中部高度恢复率在术后即出现较大差异。PKP术后建议患者早期进行康复锻炼,脊柱过早承重则导致骨折椎体进一步压缩,术后6个月时,3组的伤椎高度恢复率均较术后1 d下降。伤椎前缘高度的改变会更多地影响椎体楔形角,以此影响椎体的形态,因此,在评估PKP术后远期椎体形态时,可更多地关注伤椎前缘高度恢复率。本研究结果还显示,早期组的伤椎Cobb角和楔形角在各随访时间点均优于中、晚期组,也进一步证实了早期手术的优越性。

本研究的局限性。①为回顾性研究,研究设计本身存在局限性,证据准确度较前瞻性研究低。②仅统计了1年内单中心采用PKP治疗的OVCF患者,样本量较小,随访时间较短,数据可能存在系统和选择偏倚。③大多数晚期手术患者出现腰背部不适并使用镇痛药物,但并未对长期使用镇痛药物产生的不良反应进行统计。④患者的术前情况仅采用VAS评分和ODI来评估,指标不够丰富全面,难以准确评估患者术前生活质量。后续研究须增加样本量,设计患者队列,继续探索OVCF患者的最佳手术时机,为临床工作提供科学严谨的治疗建议。综上,早期采用PKP治疗OVCF能更好地恢复椎体高度和角度,有助于减轻患者痛苦和术后椎体形态的恢复。

参考文献
[1]
Frankel BM, Monroe T, Wang C. Percutaneous vertebral augmentation: an elevation in adjacent-level fracture risk in kyphoplasty as compared with vertebroplasty[J]. Spine J, 2007, 7(5): 575-582. DOI:10.1016/j.spinee.2006.10.020
[2]
Wang B, Zhao CP, Song LX, et al. Balloon kyphoplasty versus percutaneous vertebroplasty for osteoporotic vertebral compression fracture: a meta-analysis and systematic review[J]. J Orthop Surg Res, 2018, 13(1): 264. DOI:10.1186/s13018-018-0952-5
[3]
Ensrud KE, Schousboe JT. Clinical practice. Vertebral fractures[J]. N Engl J Med, 2011, 364(17): 1634-1642. DOI:10.1056/NEJMcp1009697
[4]
Johnell O, Kanis JA. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures[J]. Osteoporos Int, 2006, 17(12): 1726-1733. DOI:10.1007/s00198-006-0172-4
[5]
Zhou X, Meng X, Zhu H, et al. Early versus late percutaneous kyphoplasty for treating osteoporotic vertebral compression fracture: a retrospective study[J]. Clin Neurol Neurosurg, 2019, 180: 101-105. DOI:10.1016/j.clineuro.2019.03.029
[6]
He B, Zhao J, Zhang M, et al. Effect of surgical timing on the refracture rate after percutaneous vertebroplasty: a retrospective analysis of at least 4-year follow-up[J]. Biomed Res Int, 2021, 2021: 5503022.
[7]
Minamide A, Maeda T, Yamada H, et al. Early versus delayed kyphoplasty for thoracolumbar osteoporotic vertebral fractures: the effect of timing on clinical and radiographic outcomes and subsequent compression fractures[J]. Clin Neurol Neurosurg, 2018, 173: 176-181. DOI:10.1016/j.clineuro.2018.07.019
[8]
Lamy O, Uebelhart B, Aubry-rozier B. Risks and benefits of percutaneous vertebroplasty or kyphoplasty in the management of osteoporotic vertebral fractures[J]. Osteoporos Int, 2014, 25(3): 807-819. DOI:10.1007/s00198-013-2574-4
[9]
Chen YJ, Chen WH, Chen HT, et al. Repeat needle insertion in vertebroplasty to prevent re-collapse of the treated vertebrae[J]. Eur J Radiol, 2012, 81(3): 558-561. DOI:10.1016/j.ejrad.2011.02.034
[10]
Kim DJ, Kim TW, Park KH, et al. The proper volume and distribution of cement augmentation on percutaneous vertebroplasty[J]. J Korean Neurosurg Soc, 2010, 48(2): 125-128. DOI:10.3340/jkns.2010.48.2.125
[11]
叶志远, 赵旭珅, 周晓中. 强直性脊柱炎合并脊柱骨折诊疗方法的研究进展[J]. 中华创伤杂志, 2023, 39(9): 840-846.
[12]
Li YX, Guo DQ, Zhang SC, et al. Risk factor analysis for re-collapse of cemented vertebrae after percutaneous vertebroplasty(PVP) or percutaneous kyphoplasty(PKP)[J]. Int Orthop, 2018, 42(9): 2131-2139. DOI:10.1007/s00264-018-3838-6
[13]
王洪伟, 周跃, 李长青, 等. 创伤性脊柱骨折患者流行病学分析[J]. 中华创伤杂志, 2012, 28(11): 988-992. DOI:10.3760/cma.j.issn.1001-8050.2012.11.008
[14]
Palmowski Y, Balmer S, Bürger J, et al. Influence of operative timing on the early post-operative radiological and clinical outcome after kyphoplasty[J]. Eur Spine J, 2020, 29(10): 2560-2567. DOI:10.1007/s00586-020-06491-8
[15]
何金遥, 叶楷锋, 田耘. 椎体骨折特点对骨质疏松性椎体压缩骨折保守治疗效果的影响[J]. 中华骨与关节外科杂志, 2023, 16(12): 1057-1061.
[16]
Klumpp R, Trevisan C, Nava V, et al. Considerations on evolution and healing of vertebral fractures[J]. Aging Clin Exp Res, 2013, 25(Suppl 1): S75-S76.
[17]
Kalfas IH. Principles of bone healing[J]. Neurosurg Focus, 2001, 10(4): E1.
[18]
Dimitriou R, Jones E, Mcgonagle D, et al. Bone regeneration: current concepts and future directions[J]. BMC Med, 2011, 9: 66. DOI:10.1186/1741-7015-9-66
[19]
Kanchiku T, Taguchi T, Toyoda K, et al. Dynamic contrast-enhanced magnetic resonance imaging of osteoporotic vertebral fracture[J]. Spine(Phila Pa 1976), 2003, 28(22): 2522-2526. DOI:10.1097/01.BRS.0000092384.29767.85
[20]
Diamond TH, Clark WA, Kumar SV. Histomorphometric analysis of fracture healing cascade in acute osteoporotic vertebral body fractures[J]. Bone, 2007, 40(3): 775-780. DOI:10.1016/j.bone.2006.10.009
[21]
Takahashi S, Hoshino M, Takayama K, et al. Time course of osteoporotic vertebral fractures by magnetic resonance imaging using a simple classification: a multicenter prospective cohort study[J]. Osteoporos Int, 2017, 28(2): 473-482. DOI:10.1007/s00198-016-3737-x
[22]
《中国老年骨质疏松症诊疗指南(2023)》工作组, 中国老年学和老年医学学会骨质疏松分会, 中国医疗保健国际交流促进会骨质疏松病学分会, 等. 中国老年骨质疏松症诊疗指南(2023)[J]. 中华骨与关节外科杂志, 2023, 16(10): 865-885.
[23]
陶天遵, 邱贵兴, 朱汉民, 等. 原发性骨质疏松症的治疗与预防[J]. 中华骨与关节外科杂志, 2015, 8(5): 377-384.
[24]
王亮, 王璨, 杨海松, 等. 不同复位策略结合经皮椎体成形术治疗老年单节段胸腰椎骨质疏松性椎体压缩性骨折[J]. 脊柱外科杂志, 2023, 21(3): 151-154. DOI:10.3969/j.issn.1672-2957.2023.03.002
[25]
Huskisson EC. Measurement of pain[J]. Lancet, 1974, 2(7889): 1127-1131.
[26]
Fairbank JC, Couper J, Davies JB, et al. The Oswestry low back pain disability questionnaire[J]. Physiotherapy, 1980, 66(8): 271-273.
[27]
Jensen ME, Evans AJ, Mathis JM, et al. Percutaneous polymethylmethacrylate vertebroplasty in the treatment of osteoporotic vertebral body compression fractures: technical aspects[J]. AJNR Am J Neuroradiol, 1997, 18(10): 1897-1904.
[28]
Zhu RS, Kan SL, Ning GZ, et al. Which is the best treatment of osteoporotic vertebral compression fractures: balloon kyphoplasty, percutaneous vertebroplasty, or non-surgical treatment? A Bayesian network meta-analysis[J]. Osteoporos Int, 2019, 30(2): 287-298.
[29]
Bozzo A, Bhandari M. Cochrane in CORR®: percutaneous vertebroplasty for osteoporotic vertebral compression fracture[J]. Clin Orthop Relat Res, 2018, 476(10): 1920-1927.
[30]
Xie L, Zhao ZG, Zhang SJ, et al. Percutaneous vertebroplasty versus conservative treatment for osteoporotic vertebral compression fractures: an updated meta-analysis of prospective randomized controlled trials[J]. Int J Surg, 2017, 47: 25-32.
[31]
Rajasekaran S, Kanna RM, Schnake KJ, et al. Osteoporotic thoracolumbar fractures—How are they different?—Classification and treatment algorithm[J]. J Orthop Trauma, 2017, 31 Suppl 4: S49-S56.
[32]
Hoyt D, Urits I, Orhurhu V, et al. Current concepts in the management of vertebral compression fractures[J]. Curr Pain Headache Rep, 2020, 24(5): 16.
[33]
Gibbs JC, Macintyre NJ, Ponzano M, et al. Exercise for improving outcomes after osteoporotic vertebral fracture[J]. Cochrane Database Syst Rev, 2019, 7(7): CD008618.
[34]
Goodship AE. Mechanical stimulus to bone[J]. Ann Rheum Dis, 1992, 51(1): 4-6.
[35]
Novel molecular and cellular strategies to optimize bone healing[J]. Biomaterials, 2019, 196: 1.
[36]
Ahmadi SA, Takahashi S, Hoshino M, et al. Association between MRI findings and back pain after osteoporotic vertebral fractures: a multicenter prospective cohort study[J]. Spine J, 2019, 19(7): 1186-1193.
[37]
Wang F, Sun R, Zhang SD, et al. Comparison of thoracolumbar versus non-thoracolumbar osteoporotic vertebral compression fractures in risk factors, vertebral compression degree and pre-hospital back pain[J]. J Orthop Surg Res, 2023, 18(1): 643.
[38]
Abe T, Shibao Y, Takeuchi Y, et al. Initial hospitalization with rigorous bed rest followed by bracing and rehabilitation as an option of conservative treatment for osteoporotic vertebral fractures in elderly patients: a pilot one arm safety and feasibility study[J]. Arch Osteoporos, 2018, 13(1): 134.
[39]
Pfeifle C, Kohut P, Jarvers JS, et al. Does time-to-surgery affect mortality in patients with acute osteoporotic vertebral compression fractures?[J]. BMC Geriatr, 2021, 21(1): 714.
[40]
Ding Y, Dong S, Wang J, et al. Comparison between hyperextension and neutral positions for vertebroplasty and kyphoplasty: which is best for osteoporotic vertebral compression fractures?[J]. J Pain Res, 2020, 13: 2509-2518.
[41]
王化瑾, 王博. 经皮椎体后凸成形术中采用椎体支架系统治疗骨质疏松性椎体压缩性骨折[J]. 脊柱外科杂志, 2023, 21(2): 87-91, 115. DOI:10.3969/j.issn.1672-2957.2023.02.004