骨质疏松性椎体压缩性骨折(OVCF)是骨质疏松症的常见并发症,严重影响患者的生活质量,增加了患者的死亡率[1-2]。经皮椎体强化术(PVA)包括经皮椎体成形术(PVP)和经皮椎体后凸成形术(PKP),广泛用于治疗OVCF,具有简单易行,患者术后恢复快,疼痛缓解迅速等优点。然而,OVCF患者在PVA术后极易发生邻近椎体再骨折(AVF)。尽管目前对PVA是否为AVF的风险因素尚存争议,但许多研究[3-8]报道,PVA术后AVF的发生率超过10%。因此,众多学者对PVA术后AVF的风险因素进行了分析。近5年的研究[4, 8-17]结果表明,患者的一般情况,如高龄、女性、骨密度低、合并椎体裂隙征(IVC)、胸腰段骨折等均影响着AVF的发生;此外,手术因素,如骨水泥注入量过多、骨水泥分布不均、骨水泥渗漏、伤椎过撑、骨折后未及时干预等也显著增加了AVF的发生风险;同时,影像学参数改变(伤椎楔形角、矢状面参数)、退行性改变(邻近节段退行性变、椎旁肌退行性变等)也使AVF的发生风险进一步增加。本文通过回顾近年相关文献,对以上影响因素进行综述,以期为AVF的深入研究及防治提供参考。
1 患者一般情况 1.1 年龄骨质疏松症与高龄密切相关,同时高龄也是OVCF的独立危险因素。有研究[18]表明,AVF的发生率随着年龄的增长逐渐增高;近年来,又有研究[10, 16, 19-21]对这一结论进行了反复验证,并得出了相同的结论。年龄与AVF的发生率呈正相关被大部分学者认可。
1.2 性别自AVF的概念提出以来,业界广泛认同其更易发生于女性群体。2022年的一项荟萃分析[8]汇总了16项关于PVA术后AVF风险因素的研究,其中13项研究分析了性别对AVF的影响,固定效应模型显示女性是AVF的独立风险因素[比值比(OR)=1.472;95%置信区间(CI)为1.47~4.08;P=0.022),各项研究间无显著异质性。
1.3 骨密度骨密度是反映骨骼状态的直观指标,骨密度下降是AVF的独立风险因素,众多研究[7, 18, 22-24]分析了骨密度与AVF之间的关系。目前,骨密度测量的金标准为基于双能X线吸收法(DXA)的测量,当基于DXA的骨密度T值< -3.45[9]时,更易发生AVF。近年,Kulkarni等[25]的研究认为,基于定量CT(QCT)的体积骨密度较基于DXA的面积骨密度可更加精确地识别骨质疏松,但QCT测量的结果与AVF之间的关系尚未见单独报道。CT测量的HU值因不受脊柱退行性变的影响、不增加额外辐射暴露等优点而受到广泛关注,被认为是DXA的有效替代。Hendrickson等[26]的研究已经证实HU值在识别骨质疏松方面有较好的效能。最新的研究[27-28]认为,邻椎HU值的区域差异过大及邻椎HU值过低也可预测AVF的发生。Li等[27]通过分别测量邻椎正中矢状面、正中横断面及靠近上下终板的横断面上椎体髓质的HU值,用最大值减去最小值计算出邻椎HU值的区域差异,发现骨密度的局部差异大及4个层面HU值的平均值小是AVF的高危因素(OR=1.069,P=0.004;OR=0.971,P=0.011),当平均HU值< 65.78或邻椎HU值区域差异 > 33.69时,AVF的发生风险较高[ROC曲线下面积(AUC)分别为0.703、0.704]。同样,Jiang等[28]也认为,邻椎HU值较小是AVF的危险因素,当邻椎HU值< 66.9时,AVF发生风险显著增加(AUC为0.901),并且伤椎与邻椎HU值的比例 > 15.18也可用于识别AVF风险(AUC为0.874)。同时,激素的使用影响了骨代谢平衡,既往服用类固醇药物也将增加AVF的发生风险[29],而抗骨质疏松治疗可显著降低AVF的发生率[19, 30]。
1.4 IVCIVC是Kümmell病的典型表现。目前主流观点[31]认为,IVC由椎体缺血性坏死所致;同时,由于骨质疏松症患者体内成骨细胞减少,骨质缺损难以完全修复,因此,骨密度下降患者更易合并IVC。Zhang等[8]通过对2020年以前的相关文献进行荟萃分析发现,增强椎存在IVC的患者PVA术后更易发生AVF(OR=4.456;95%CI为1.072~18.529;P=0.040),这可能是由于IVC患者椎体血供不足,椎体强度较弱,同时,此部分患者行PVA时多伴有骨水泥致密分布,使邻椎应力传导不均,二者共同增加了AVF的发生风险。
也有研究[19, 32]认为,高血压和糖尿病是AVF的风险因素,但此观点并未获得广泛认同。既往存在椎体骨折往往意味着患者骨骼状态较差,同时椎体压缩或椎体强化使脊柱受力环境发生变化,因而存在既往骨折的患者更易发生AVF。既往研究[3]表明,存在椎体骨折史的患者AVF的发生风险是初次骨折患者的2.721倍;近年研究[12]显示,既往椎体骨折≥1次的患者AVF的发生风险是初次骨折患者的3.7倍;Matsumoto等[20-21]也发现,既往椎体骨折每增加1次,PKP术后2个月内发生AVF的风险将增加2~4倍。
1.5 OVCF位于胸腰段
胸腰段(T11~L2)是脊柱生理曲度的转折点,脊柱从活动度较小的胸椎移行为活动度较大的腰椎,属于脊柱应力集中点,此处椎体压缩使局部应力更为集中,因此,初始骨折部位位于胸腰段不仅是PVA术后再骨折的危险因素[33],也是AVF的促进因素[6, 8, 12, 19, 34]。有研究[33]显示,在AVF患者中,超过10%初始骨折部位位于胸腰段。最近的荟萃分析[8]显示,初始骨折部位位于胸腰段的患者AVF的发生率是非胸腰段的1.027倍(P < 0.001)。
2 手术因素 2.1 骨水泥注入量骨水泥注入量可直接影响骨水泥在椎体内的分布状态。随着注入量的增加,骨水泥与终板接触的概率增大,导致邻近椎体的应力集中,从而更易发生AVF(OR=23.54,P=0.01)[17]。有研究[19]显示,控制骨水泥注入量(< 4.17 mL)可有效降低骨水泥渗漏的风险,当骨水泥注入量 > 5 mL时,椎间盘渗漏的风险增加1.45倍,AVF的发生风险增加4.29倍[13]。
2.2 骨水泥分布骨水泥的分布形态对脊柱生物力学的影响一直是业内的研究热点,骨水泥分布不均显著增加了AVF的发生率。当骨水泥在椎体内呈单侧分布或团块状分布时[9, 15],强化椎体产生刚性梯度,使邻椎应力不均,导致AVF风险增加。在行双侧骨水泥注射时,两侧骨水泥未连接也是AVF的风险因素,使两侧骨水泥相互接触可降低AVF的发生风险[35]。
同时,骨水泥广泛分布也是AVF的风险因素。Peng等[36]的研究发现,1年内发生AVF的患者中有78%骨水泥达到对侧椎弓根,显著高于非AVF组(55%),79.7%的患者骨水泥接触两侧终板,亦显著高于非AVF组(41.7%)。因此,探寻使骨水泥均匀弥散而又不过度分布的方法或技术对预防AVF十分必要。
基于此,Zhang等[37]提出了超早期低黏度骨水泥精准注射法,即“注射-退针-再注射-再退针”模式,直至骨水泥弥散满意,使骨水泥分布最终呈现“倒U型”,这样既获得了满意的骨水泥弥散效果,又避免了骨水泥过度分布,应用此种方法AVF的发生率显著低于传统骨水泥注射方法(P=0.03)。
2.3 骨水泥渗漏骨水泥渗漏是PVP术后常见并发症,约30%的患者PVP后出现了骨水泥渗漏[38],目前,受关注较多的AVF的风险因素是骨水泥渗漏至椎间盘。多数学者[3-4, 7-8, 13, 18, 22, 39-40]认为,骨水泥渗漏至椎间盘增加了PVA术后AVF的发生率(OR=1.85~8.03);Komemushi等[40]更是认为,骨水泥渗漏至椎间盘是PVP术后再骨折的唯一风险因素。这可能是因为骨水泥强度较高,而椎间盘相对柔软,骨水泥渗漏至椎间盘势必会引起邻椎的生物力学改变,使邻椎局部应力增高,从而导致AVF的发生。
2.4 椎体高度恢复尽管尽可能恢复椎体高度理论上可矫正因椎体楔形变导致的脊柱力线改变,从而降低再骨折的发生率,然而,多数研究[12, 16, 39, 41]得出的结论与该观点并不一致。Takahashi等[12]的研究发现,当矫正角度 > 10°时,AVF的发生风险增加12.4倍,这可能是因为矢状面失衡往往是多个节段退行性变共同作用的结果,单纯恢复伤椎高度对矢状面参数的矫正作用微弱,但椎体高度恢复率高则意味着需要注入更多的骨水泥,过多的骨水泥注入量又增加了骨水泥渗漏的风险,因此,目前并不提倡过度追求恢复伤椎高度。
2.5 手术时机骨折后早期干预有利于降低AVF的发生率。Yang等[11]的研究发现,骨折后早期采用PVP治疗,AVF的发生率显著降低;若症状出现后30 d内未行有效干预,之后再行手术治疗,AVF的发生风险将增加6.083倍。刘小雷等[42]亦发现,骨折后2周内采用PVA治疗AVF的远期发生率较低,可能的原因是在骨折发生后若未行有效干预,椎体存在进一步压缩的风险,同时术前骨痂的形成也一定程度上导致术中骨水泥弥散方式的改变,进而使邻椎局部应力环境进一步恶化。因此,当症状出现后尽早手术治疗,对于降低AVF的发生风险具有重要意义。
3 影像学参数 3.1 伤椎楔形角术前伤椎楔形角是椎体压缩严重程度的衡量指标,当椎体压缩严重、局部矢状面参数发生改变时,AVF的发生风险更高。多项研究[12, 16, 43-44]证实,AVF患者伤椎楔形角的平均值远高于非AVF人群。Takahashi等[12]认为,当伤椎楔形角 > 25°时,AVF的发生风险增加8.4倍,可能的原因是椎体压缩使脊柱力线发生改变,邻椎受力点发生偏移,使应力局部集中,邻椎前柱承载更多重力负荷,从而使邻椎发生压缩。然而,Tao等[9]的研究发现,术前及术后的椎体楔形角在AVF组和非AVF组中并无明显差异,但随着时间推移,即使已做强化,2组椎体仍继续发生不同程度的压缩,AVF组在邻椎骨折前末次随访时的伤椎楔形角大于非AVF组,其可能的原因是伤椎压缩程度较高时往往意味着更差的一般状况,单纯采用PVA治疗较难恢复椎体正常矢状面参数,因此,脊柱力线在术后仍有较大偏移,但若伤椎压缩程度较小,在不增加骨水泥渗漏风险的情况下即可使脊柱力线得到恢复或基本恢复,只有当伤椎再次压缩至影响邻椎应力的情况下才会增加AVF发生的风险。Yamada等[14]同样发现,发生增强椎再骨折的患者AVF的发生风险显著增高(OR=21.89,P < 0.001)。尽管增强椎再骨折可能与多种因素有关,但不可否认的是,骨骼质量较差直接导致了这一结果。同时,增强椎再骨折使椎体局部后凸角增大,增大的局部后凸角与骨水泥二次强化共同使邻椎局部应力增加,这些因素共同导致AVF的发生风险增加。
3.2 矢状面参数除伤椎楔形角外,邻椎局部后凸角、骨盆倾斜角(PT)、腰椎前凸角(LL)及矢状面轴向距离(SVA)也是影响AVF的因素。邻椎局部后凸角是指上邻椎上终板与下邻椎下终板间的夹角,其与伤椎压缩程度及骨折部位有关。PT是指骶骨终板中点和双侧股骨头中点的连线与重力线间的夹角,是反映脊柱畸形代偿程度的指标。Matsumoto等[6]的研究发现,术后2个月内发生AVF的患者邻椎局部后凸角显著高于未发生AVF的患者(12.8±8.4 vs 5.2±7.9,P=0.003),且随着邻椎局部后凸角的增加,术后早期发生AVF的风险显著增加(OR=1.101,P=0.003);而PT增大则在初次骨折节段为胸腰段的AVF患者中较为多见(OR=1.087,P=0.046)。LL及SVA是评价矢状面形态的重要参数,有研究[24]显示,当SVA > 6.46 cm时或当LL < 39.5°时,PKP术后AVF的风险显著升高(AUC分别为0.757、0.696)。
4 退行性变PVA患者术后易发生邻近节段退行性变(ASD),其中最常见的是邻近椎间盘退行性变,当骨水泥渗漏至椎间盘时,ASD的发生率显著增加(OR=5.706,P=0.001),同时也增加了AVF的风险[45]。Tao等[9]的研究认为,邻近椎间盘退行性变大于Ⅳ级时应警惕AVF的发生。近年来,有关肌少症与再骨折相关性研究[46-47]显示,肌少症是再骨折的独立危险因素。椎旁肌退行性变是肌少症的直观表现,椎旁肌脂肪浸润程度及双侧肌肉横截面积不等是PVP术后发生AVF的危险因素[17, 29]。
5 结语与展望综上,AVF是多因素共同作用的结果,识别AVF的风险因素对改进手术技术、降低PVA术后AVF发生的风险具有重要意义。目前,普遍认为高龄、女性、骨质疏松、合并IVC、既往存在椎体骨折、初始骨折节段位于胸腰段、骨水泥注入量过大、骨水泥渗漏、骨水泥分布不均、伤椎压缩严重、伤椎过撑、手术不及时、增强椎再骨折、矢状面失衡、邻近节段及椎旁肌退行性变等是AVF的风险因素,这些因素直接或间接导致了脊柱力线及局部应力的改变,力学环境的恶化与骨密度下降共同作用于邻椎,使AVF发生的风险增加。未来多中心、大样本的前瞻性研究和随机对照试验有待进一步开展以进一步明确各风险因素对AVF的影响程度,从而优化手术方案,降低术后AVF的发生率。通过对AVF风险因素的深入研究和有效防控,有望在未来结合患者个体情况为OVCF的治疗提供更科学、全面的解决方案。
[1] |
Suzuki N, Ogikubo O, Hansson T. The prognosis for pain, disability, activities of daily living and quality of life after an acute osteoporotic vertebral body fracture: its relation to fracture level, type of fracture and grade of fracture deformation[J]. Eur Spine J, 2009, 18(1): 77-88. DOI:10.1007/s00586-008-0847-y |
[2] |
Williams SA, Daigle SG, Weiss R, et al. Economic burden of osteoporosis-related fractures in the US medicare population[J]. Ann Pharmacother, 2021, 55(7): 821-829. DOI:10.1177/1060028020970518 |
[3] |
Zhong BY, He SC, Zhu HD, et al. Risk prediction of new adjacent vertebral fractures after PVP for patients with vertebral compression fractures: development of a prediction model[J]. Cardiovasc Intervent Radiol, 2017, 40(2): 277-284. DOI:10.1007/s00270-016-1492-1 |
[4] |
Ko BS, Cho KJ, Park JW. Early adjacent vertebral fractures after balloon kyphoplasty for osteoporotic vertebral compression fractures[J]. Asian Spine J, 2019, 13(2): 210-215. DOI:10.31616/asj.2018.0224 |
[5] |
Hijikata Y, Kamitani T, Nakahara M, et al. Development and internal validation of a clinical prediction model for acute adjacent vertebral fracture after vertebral augmentation: the AVA score[J]. Bone Joint J, 2022, 104-B(1): 97-102. DOI:10.1302/0301-620X.104B1.BJJ-2021-0151.R3 |
[6] |
Matsumoto K, Hoshino M, Omori K, et al. The relationship between global sagittal balance and the incidence of early adjacent vertebral fractures following balloon kyphoplasty[J]. World Neurosurg, 2023, 175: e818-e822. DOI:10.1016/j.wneu.2023.04.027 |
[7] |
Zhou C, Huang S, Liao Y, et al. Correlation analysis of larger side bone cement volume/vertebral body volume ratio with adjacent vertebral compression fractures during vertebroplasty[J]. Front Endocrinol(Lausanne), 2023, 14: 1072087. DOI:10.3389/fendo.2023.1072087 |
[8] |
Zhang T, Wang Y, Zhang P, et al. What are the risk factors for adjacent vertebral fracture after vertebral augmentation? A meta-analysis of published studies[J]. Global Spine J, 2022, 12(1): 130-141. DOI:10.1177/2192568220978223 |
[9] |
Tao W, Biao W, Xingmei C, et al. Predictive factors for adjacent vertebral fractures after percutaneous kyphoplasty in patients with osteoporotic vertebral compression fracture[J]. Pain Physician, 2022, 25(5): E725-E732. |
[10] |
Luo PJ, Tang YC, Zhou TP, et al. Risk factor analysis of the incidence of subsequent adjacent vertebral fracture after lumbar spinal fusion surgery with instrumentation[J]. World Neurosurg, 2020, 135: e87-e93. DOI:10.1016/j.wneu.2019.11.010 |
[11] |
Yang CC, Chien JT, Tsai TY, et al. Earlier vertebroplasty for osteoporotic thoracolumbar compression fracture may minimize the subsequent development of adjacent fractures: a retrospective study[J]. Pain Physician, 2018, 21(5): E483-E491. |
[12] |
Takahashi S, Hoshino M, Yasuda H, et al. Development of a scoring system for predicting adjacent vertebral fracture after balloon kyphoplasty[J]. Spine J, 2019, 19(7): 1194-1201. DOI:10.1016/j.spinee.2019.02.013 |
[13] |
Wang M, Li B, Wang Y, et al. The effects of bone cement volume in percutaneous vertebroplasty for thoracolumbar junction vertebral compression fractures: a clinical comparative study[J]. Mediators Inflamm, 2022, 2022: 4230065. |
[14] |
Yamada Y, Toribatake Y, Okamoto S, et al. Recompression of augmented vertebrae after balloon kyphoplasty is a risk of adjacent vertebral fracture[J]. Spine Surg Relat Res, 2022, 7(1): 89-95. |
[15] |
Qian Y, Hu X, Li C, et al. Development of a nomogram model for prediction of new adjacent vertebral compression fractures after vertebroplasty[J]. BMC Surg, 2023, 23(1): 197. DOI:10.1186/s12893-023-02068-6 |
[16] |
Morozumi M, Matsubara Y, Muramoto A, et al. A study of risk factors for early-onset adjacent vertebral fractures after kyphoplasty[J]. Global Spine J, 2020, 10(1): 13-20. DOI:10.1177/2192568219834899 |
[17] |
Chen M, Yang C, Cai Z, et al. Lumbar posterior group muscle degeneration: influencing factors of adjacent vertebral body re-fracture after percutaneous vertebroplasty[J]. Front Med(Lausanne), 2023, 9: 1078403. |
[18] |
Rho YJ, Choe WJ, Chun YI. Risk factors predicting the new symptomatic vertebral compression fractures after percutaneous vertebroplasty or kyphoplasty[J]. Eur Spine J, 2012, 21(5): 905-911. DOI:10.1007/s00586-011-2099-5 |
[19] |
Mao Y, Wu W, Zhang J, et al. Prediction model of adjacent vertebral compression fractures after percutaneous kyphoplasty: a retrospective study[J]. BMJ Open, 2023, 13(5): e064825. DOI:10.1136/bmjopen-2022-064825 |
[20] |
Matsumoto K, Hoshino M, Omori K, et al. Preoperative scoring system for prediction of early adjacent vertebral body fracture after balloon kyphoplasty using X-rays taken in a non-weight-bearing position[J]. World Neurosurg, 2023, 178: e42-e47. DOI:10.1016/j.wneu.2023.06.084 |
[21] |
Matsumoto K, Hoshino M, Omori K, et al. Preoperative scoring system for predicting early adjacent vertebral fractures after balloon kyphoplasty[J]. J Orthop Sci, 2021, 26(4): 538-542. DOI:10.1016/j.jos.2020.06.003 |
[22] |
Lin H, Bao LH, Zhu XF, et al. Analysis of recurrent fracture of a new vertebral body after percutaneous vertebroplasty in patients with osteoporosis[J]. Orthop Surg, 2010, 2(2): 119-123. DOI:10.1111/j.1757-7861.2010.00074.x |
[23] |
Horii C, Asai Y, Iidaka T, et al. The incidence and risk factors for adjacent vertebral fractures in community-dwelling people with prevalent vertebral fracture: the 3rd and 4th survey of the ROAD study[J]. Arch Osteoporos, 2020, 15(1): 74. DOI:10.1007/s11657-020-00747-y |
[24] |
钱佳明, 王啸, 骆园, 等. 脊柱骨盆参数及骨密度与椎体后凸成形术后邻椎再骨折的相关性[J]. 中华骨质疏松和骨矿盐疾病杂志, 2022, 15(1): 24-30. |
[25] |
Kulkarni AG, Thonangi Y, Pathan S, et al. Should Q-CT be the gold standard for detecting spinal osteoporosis?[J]. Spine(Phila Pa 1976), 2022, 47(6): E258-E264. DOI:10.1097/BRS.0000000000004224 |
[26] |
Hendrickson NR, Pickhardt PJ, Del Rio AM, et al. Bone mineral density T-scores derived from CT attenuation numbers(Hounsfield units): clinical utility and correlation with dual-energy X-ray absorptiometry[J]. Iowa Orthop J, 2018, 38: 25-31. |
[27] |
Li J, Xie Y, Sun S, et al. Regional differences in bone mineral density biomechanically induce a higher risk of adjacent vertebral fracture after percutaneous vertebroplasty: a case-comparative study[J]. Int J Surg, 2023, 109(3): 352-363. |
[28] |
Jiang LM, Tong YX, Jiang JJ, et al. The vertebral Hounsfield units can quantitatively predict the risk of adjacent vertebral fractures after percutaneous kyphoplasty[J]. Quant Imaging Med Surg, 2023, 13(2): 1036-1047. |
[29] |
Osterhoff G, Asatryan G, Spiegl UJA, et al. Impact of multifidus muscle atrophy on the occurrence of secondary symptomatic adjacent osteoporotic vertebral compression fractures[J]. Calcif Tissue Int, 2022, 110(4): 421-427. |
[30] |
Chen YC, Lin WC. Can anti-osteoporotic therapy reduce adjacent fracture in magnetic resonance imaging-proven acute osteoporotic vertebral fractures?[J]. BMC Musculoskelet Disord, 2016, 17: 151. |
[31] |
Kim YC, Kim YH, Ha KY. Pathomechanism of intravertebral clefts in osteoporotic compression fractures of the spine[J]. Spine J, 2014, 14(4): 659-666. |
[32] |
Chen C, Fan P, Xie X, et al. Risk factors for cement leakage and adjacent vertebral fractures in kyphoplasty for osteoporotic vertebral fractures[J]. Clin Spine Surg, 2020, 33(6): E251-E255. |
[33] |
Liu J, Tang J, Gu Z, et al. Fracture-free probability and predictors of new symptomatic fractures in sandwich, ordinary-adjacent, and non-adjacent vertebrae: a vertebra-specific survival analysis[J]. J Neurointerv Surg, 2021, 13(11): 1058-1062. |
[34] |
Park JS, Park YS. Survival analysis and risk factors of new vertebral fracture after vertebroplasty for osteoporotic vertebral compression fracture[J]. Spine J, 2021, 21(8): 1355-1361. |
[35] |
Song Q, Zhao Y, Li D, et al. Effect of different bone cement distributions in percutaneous kyphoplasty on clinical outcomes for osteoporotic vertebral compression fractures: a retrospective study[J]. Medicine(Baltimore), 2023, 102(12): e33309. |
[36] |
Peng B, Zhang Z, Chen J, et al. Correlation study between bone cement distribution and adjacent vertebral fractures after percutaneous vertebroplasty[J]. World Neurosurg, 2023, 178: e766-e772. |
[37] |
Zhang ZF, Liu DH, Wu PY, et al. Ultra-early injection of low-viscosity cement in vertebroplasty procedure for treating osteoporotic vertebral compression fractures: a retrospective cohort study[J]. Int J Surg, 2018, 52: 35-39. |
[38] |
Fan B, Wei Z, Zhou X, et al. Does vertebral augmentation lead to an increasing incidence of adjacent vertebral failure? A systematic review and meta-analysis[J]. Int J Surg, 2016, 36(Pt A): 369-376. |
[39] |
Yoo CM, Park KB, Hwang SH, et al. The analysis of patterns and risk factors of newly developed vertebral compression fractures after percutaneous vertebroplasty[J]. J Korean Neurosurg Soc, 2012, 52(4): 339-345. |
[40] |
Komemushi A, Tanigawa N, Kariya S, et al. Percutaneous vertebroplasty for osteoporotic compression fracture: multivariate study of predictors of new vertebral body fracture[J]. Cardiovasc Intervent Radiol, 2006, 29(4): 580-585. |
[41] |
姜天淇, 葛泽峰, 田新月, 等. 骨质疏松性椎体压缩性骨折经皮椎体成形术后继发椎体再骨折的相关因素分析[J]. 脊柱外科杂志, 2023, 21(1): 21-25. DOI:10.3969/j.issn.1672-2957.2023.01.004 |
[42] |
刘小雷, 张锦飙, 孙中仪, 等. 经皮椎体强化术的手术时机对老年骨质疏松性椎体压缩性骨折治疗效果的影响[J]. 脊柱外科杂志, 2023, 21(1): 7-12. DOI:10.3969/j.issn.1672-2957.2023.01.002 |
[43] |
Zhao C, Liu X, Wang Y, et al. The effects of biomechanical factors on adjacent vertebral compression fractures after percutaneous kyphoplasty: a propensity score matching analysis[J]. Osteoporos Int, 2022, 33(8): 1795-1806. |
[44] |
Lee HJ, Park J, Lee IW, et al. Clinical, radiographic, and morphometric risk factors for adjacent and remote vertebral compression fractures over a minimum follow-up of 4 years after percutaneous vertebroplasty for osteoporotic vertebral compression fractures: novel three-dimensional voxel-based morphometric analysis[J]. World Neurosurg, 2019, 125: e146-e157. |
[45] |
Wang T, Si F, Zang L, et al. Radiographic adjacent segment degeneration and risk factors for osteoporotic vertebral compression fractures treated with percutaneous kyphoplasty[J]. Int Orthop, 2022, 46(11): 2619-2628. |
[46] |
Chen Q, Lei C, Zhao T, et al. Relationship between sarcopenia/paravertebral muscles and the incidence of vertebral refractures following percutaneous kyphoplasty: a retrospective study[J]. BMC Musculoskelet Disord, 2022, 23(1): 879. |
[47] |
Jing C, Wang H, Liu P, et al. Effect of sarcopenia on refractures of adjacent vertebra after percutaneous kyphoplasty[J]. BMC Musculoskelet Disord, 2024, 25(1): 210. |